Exemple #1
0
    def do_test(self, writer, epoch, step, data_path, test_index):
        dataset = env.MultispeakerDataset(test_index, data_path)
        criterion = nn.NLLLoss().cuda()
        # k = 0
        # saved_k = 0
        pad_left = self.pad_left()
        pad_left_encoder = self.pad_left_encoder()
        pad_left_decoder = self.pad_left_decoder()
        extra_pad_right = 0
        pad_right = self.pad_right() + extra_pad_right
        window = 16 * self.total_scale()

        test_loader = DataLoader(
            dataset,
            collate_fn=lambda batch: env.collate_multispeaker_samples(
                pad_left, window, pad_right, batch),
            batch_size=16,
            num_workers=2,
            shuffle=False,
            pin_memory=True)

        running_loss_c = 0.
        running_loss_f = 0.
        running_loss_vq = 0.
        running_loss_vqc = 0.
        running_entropy = 0.
        running_max_grad = 0.
        running_max_grad_name = ""

        for i, (speaker, wave16) in enumerate(test_loader):
            speaker = speaker.cuda()
            wave16 = wave16.cuda()

            coarse = (wave16 + 2**15) // 256
            fine = (wave16 + 2**15) % 256

            coarse_f = coarse.float() / 127.5 - 1.
            fine_f = fine.float() / 127.5 - 1.
            total_f = (wave16.float() + 0.5) / 32767.5

            noisy_f = total_f

            x = torch.cat([
                coarse_f[:,
                         pad_left - pad_left_decoder:-pad_right].unsqueeze(-1),
                fine_f[:,
                       pad_left - pad_left_decoder:-pad_right].unsqueeze(-1),
                coarse_f[:, pad_left - pad_left_decoder + 1:1 -
                         pad_right].unsqueeze(-1),
            ],
                          dim=2)
            y_coarse = coarse[:, pad_left + 1:1 - pad_right]
            y_fine = fine[:, pad_left + 1:1 - pad_right]

            translated = noisy_f[:, pad_left - pad_left_encoder:]

            p_cf, vq_pen, encoder_pen, entropy = self(speaker, x, translated)
            p_c, p_f = p_cf
            loss_c = criterion(p_c.transpose(1, 2).float(), y_coarse)
            loss_f = criterion(p_f.transpose(1, 2).float(), y_fine)
            # encoder_weight = 0.01 * min(1, max(0.1, step / 1000 - 1))
            # loss = loss_c + loss_f + vq_pen + encoder_weight * encoder_pen

            running_loss_c += loss_c.item()
            running_loss_f += loss_f.item()
            running_loss_vq += vq_pen.item()
            running_loss_vqc += encoder_pen.item()
            running_entropy += entropy

        avg_loss_c = running_loss_c / (i + 1)
        avg_loss_f = running_loss_f / (i + 1)
        avg_loss_vq = running_loss_vq / (i + 1)
        avg_loss_vqc = running_loss_vqc / (i + 1)
        avg_entropy = running_entropy / (i + 1)

        k = step // 1000

        # tensorboard writer
        writer.add_scalars(
            'Test/loss_group', {
                'loss_c': avg_loss_c,
                'loss_f': avg_loss_f,
                'vq': avg_loss_vq,
                'vqc': avg_loss_vqc,
                'entropy': avg_entropy,
            }, step - 1)
Exemple #2
0
    def do_train(self,
                 paths,
                 dataset,
                 optimiser,
                 epochs,
                 batch_size,
                 step,
                 lr=1e-4,
                 valid_index=[],
                 use_half=False,
                 do_clip=False):

        if use_half:
            import apex
            optimiser = apex.fp16_utils.FP16_Optimizer(optimiser,
                                                       dynamic_loss_scale=True)
        for p in optimiser.param_groups:
            p['lr'] = lr
        criterion = nn.NLLLoss().cuda()
        k = 0
        saved_k = 0
        pad_left = self.pad_left()
        pad_left_encoder = self.pad_left_encoder()
        pad_left_decoder = self.pad_left_decoder()
        if self.noise_x:
            extra_pad_right = 127
        else:
            extra_pad_right = 0
        pad_right = self.pad_right() + extra_pad_right
        window = 16 * self.total_scale()
        logger.log(
            f'pad_left={pad_left_encoder}|{pad_left_decoder}, pad_right={pad_right}, total_scale={self.total_scale()}'
        )

        for e in range(epochs):

            trn_loader = DataLoader(
                dataset,
                collate_fn=lambda batch: env.collate_multispeaker_samples(
                    pad_left, window, pad_right, batch),
                batch_size=batch_size,
                num_workers=2,
                shuffle=True,
                pin_memory=True)

            start = time.time()
            running_loss_c = 0.
            running_loss_f = 0.
            running_loss_vq = 0.
            running_loss_vqc = 0.
            running_entropy = 0.
            running_max_grad = 0.
            running_max_grad_name = ""

            iters = len(trn_loader)

            for i, (speaker, wave16) in enumerate(trn_loader):

                speaker = speaker.cuda()
                wave16 = wave16.cuda()

                coarse = (wave16 + 2**15) // 256
                fine = (wave16 + 2**15) % 256

                coarse_f = coarse.float() / 127.5 - 1.
                fine_f = fine.float() / 127.5 - 1.
                total_f = (wave16.float() + 0.5) / 32767.5

                if self.noise_y:
                    noisy_f = total_f * (
                        0.02 * torch.randn(total_f.size(0), 1).cuda()
                    ).exp() + 0.003 * torch.randn_like(total_f)
                else:
                    noisy_f = total_f

                if use_half:
                    coarse_f = coarse_f.half()
                    fine_f = fine_f.half()
                    noisy_f = noisy_f.half()

                x = torch.cat([
                    coarse_f[:, pad_left -
                             pad_left_decoder:-pad_right].unsqueeze(-1),
                    fine_f[:, pad_left -
                           pad_left_decoder:-pad_right].unsqueeze(-1),
                    coarse_f[:, pad_left - pad_left_decoder + 1:1 -
                             pad_right].unsqueeze(-1),
                ],
                              dim=2)
                y_coarse = coarse[:, pad_left + 1:1 - pad_right]
                y_fine = fine[:, pad_left + 1:1 - pad_right]

                if self.noise_x:
                    # Randomly translate the input to the encoder to encourage
                    # translational invariance
                    total_len = coarse_f.size(1)
                    translated = []
                    for j in range(coarse_f.size(0)):
                        shift = random.randrange(256) - 128
                        translated.append(
                            noisy_f[j, pad_left - pad_left_encoder +
                                    shift:total_len - extra_pad_right + shift])
                    translated = torch.stack(translated, dim=0)
                else:
                    translated = noisy_f[:, pad_left - pad_left_encoder:]
                p_cf, vq_pen, encoder_pen, entropy = self(
                    speaker, x, translated)
                p_c, p_f = p_cf
                loss_c = criterion(p_c.transpose(1, 2).float(), y_coarse)
                loss_f = criterion(p_f.transpose(1, 2).float(), y_fine)
                encoder_weight = 0.01 * min(1, max(0.1, step / 1000 - 1))
                loss = loss_c + loss_f + vq_pen + encoder_weight * encoder_pen

                optimiser.zero_grad()
                if use_half:
                    optimiser.backward(loss)
                    if do_clip:
                        raise RuntimeError(
                            "clipping in half precision is not implemented yet"
                        )
                else:
                    loss.backward()
                    if do_clip:
                        max_grad = 0
                        max_grad_name = ""
                        for name, param in self.named_parameters():
                            if param.grad is not None:
                                param_max_grad = param.grad.data.abs().max()
                                if param_max_grad > max_grad:
                                    max_grad = param_max_grad
                                    max_grad_name = name
                                if 1000000 < param_max_grad:
                                    logger.log(
                                        f'Very large gradient at {name}: {param_max_grad}'
                                    )
                        if 100 < max_grad:
                            for param in self.parameters():
                                if param.grad is not None:
                                    if 1000000 < max_grad:
                                        param.grad.data.zero_()
                                    else:
                                        param.grad.data.mul_(100 / max_grad)
                        if running_max_grad < max_grad:
                            running_max_grad = max_grad
                            running_max_grad_name = max_grad_name

                        if 100000 < max_grad:
                            torch.save(self.state_dict(), "bad_model.pyt")
                            raise RuntimeError(
                                "Aborting due to crazy gradient (model saved to bad_model.pyt)"
                            )
                optimiser.step()
                running_loss_c += loss_c.item()
                running_loss_f += loss_f.item()
                running_loss_vq += vq_pen.item()
                running_loss_vqc += encoder_pen.item()
                running_entropy += entropy

                self.after_update()

                speed = (i + 1) / (time.time() - start)
                avg_loss_c = running_loss_c / (i + 1)
                avg_loss_f = running_loss_f / (i + 1)
                avg_loss_vq = running_loss_vq / (i + 1)
                avg_loss_vqc = running_loss_vqc / (i + 1)
                avg_entropy = running_entropy / (i + 1)

                step += 1
                k = step // 1000
                logger.status(
                    f'Epoch: {e+1}/{epochs} -- Batch: {i+1}/{iters} -- Loss: c={avg_loss_c:#.4} f={avg_loss_f:#.4} vq={avg_loss_vq:#.4} vqc={avg_loss_vqc:#.4} -- Entropy: {avg_entropy:#.4} -- Grad: {running_max_grad:#.1} {running_max_grad_name} Speed: {speed:#.4} steps/sec -- Step: {k}k '
                )

            os.makedirs(paths.checkpoint_dir, exist_ok=True)
            torch.save(self.state_dict(), paths.model_path())
            np.save(paths.step_path(), step)
            logger.log_current_status()
            logger.log(
                f' <saved>; w[0][0] = {self.overtone.wavernn.gru.weight_ih_l0[0][0]}'
            )
            if k > saved_k + 50:
                torch.save(self.state_dict(), paths.model_hist_path(step))
                saved_k = k
                self.do_generate(paths, step, dataset.path, valid_index)
Exemple #3
0
    def do_train(self,
                 paths,
                 dataset,
                 optimiser,
                 writer,
                 epochs,
                 test_epochs,
                 batch_size,
                 step,
                 epoch,
                 valid_index=[],
                 use_half=False,
                 do_clip=False,
                 beta=0.):

        if use_half:
            import apex
            optimiser = apex.fp16_utils.FP16_Optimizer(optimiser,
                                                       dynamic_loss_scale=True)
        # for p in optimiser.param_groups : p['lr'] = lr
        criterion = nn.NLLLoss().cuda()
        # k = 0
        # saved_k = 0
        pad_left = self.pad_left()
        pad_left_encoder = self.pad_left_encoder()
        pad_left_decoder = self.pad_left_decoder()
        if self.noise_x:
            extra_pad_right = 127
        else:
            extra_pad_right = 0
        pad_right = self.pad_right() + extra_pad_right
        window = 16 * self.total_scale()

        for e in tqdm(range(epoch, epochs), desc="epochs"):
            trn_loader = DataLoader(
                dataset,
                collate_fn=lambda batch: env.collate_multispeaker_samples(
                    pad_left, window, pad_right, batch),
                batch_size=batch_size,
                num_workers=2,
                shuffle=True,
                pin_memory=True)

            start = time.time()
            running_loss_c = 0.
            running_loss_f = 0.
            running_loss_vq = 0.
            running_loss_vqc = 0.
            running_entropy = 0.
            running_max_grad = 0.
            running_max_grad_name = ""

            iters = len(trn_loader)

            for i, (speaker, wave16) in enumerate(trn_loader):
                # class MultispeakerDataset(Dataset):
                # ...
                # return ""speaker_onehot"", audio
                speaker = speaker.cuda()
                wave16 = wave16.cuda()

                coarse = (wave16 + 2**15) // 256
                fine = (wave16 + 2**15) % 256

                coarse_f = coarse.float() / 127.5 - 1.
                fine_f = fine.float() / 127.5 - 1.
                total_f = (wave16.float() + 0.5) / 32767.5

                if self.noise_y:
                    noisy_f = total_f * (
                        0.02 * torch.randn(total_f.size(0), 1).cuda()
                    ).exp() + 0.003 * torch.randn_like(total_f)
                else:
                    noisy_f = total_f

                if use_half:
                    coarse_f = coarse_f.half()
                    fine_f = fine_f.half()
                    noisy_f = noisy_f.half()

                x = torch.cat([
                    coarse_f[:, pad_left -
                             pad_left_decoder:-pad_right].unsqueeze(-1),
                    fine_f[:, pad_left -
                           pad_left_decoder:-pad_right].unsqueeze(-1),
                    coarse_f[:, pad_left - pad_left_decoder + 1:1 -
                             pad_right].unsqueeze(-1),
                ],
                              dim=2)
                y_coarse = coarse[:, pad_left + 1:1 - pad_right]
                y_fine = fine[:, pad_left + 1:1 - pad_right]

                if self.noise_x:
                    # Randomly translate the input to the encoder to encourage
                    # translational invariance
                    total_len = coarse_f.size(1)
                    translated = []
                    for j in range(coarse_f.size(0)):
                        shift = random.randrange(256) - 128
                        translated.append(
                            noisy_f[j, pad_left - pad_left_encoder +
                                    shift:total_len - extra_pad_right + shift])
                    translated = torch.stack(translated, dim=0)
                else:
                    translated = noisy_f[:, pad_left - pad_left_encoder:]

                # forward calculation
                ## def forward(self, global_decoder_cond, x, samples):
                p_cf, vq_pen, encoder_pen, entropy = self(
                    speaker, x, translated)

                # loss calculation
                p_c, p_f = p_cf
                loss_c = criterion(p_c.transpose(1, 2).float(), y_coarse)
                loss_f = criterion(p_f.transpose(1, 2).float(), y_fine)
                encoder_weight = 0.01 * min(1, max(0.1, step / 1000 - 1))
                loss = loss_c + loss_f + vq_pen + encoder_weight * encoder_pen

                # back propagation
                optimiser.zero_grad()
                if use_half:
                    optimiser.backward(loss)
                    if do_clip:
                        raise RuntimeError(
                            "clipping in half precision is not implemented yet"
                        )
                else:
                    loss.backward()
                    if do_clip:
                        max_grad = 0
                        max_grad_name = ""
                        for name, param in self.named_parameters():
                            if param.grad is not None:
                                param_max_grad = param.grad.data.abs().max()
                                if param_max_grad > max_grad:
                                    max_grad = param_max_grad
                                    max_grad_name = name
                        if 100 < max_grad:
                            for param in self.parameters():
                                if param.grad is not None:
                                    if 1000000 < max_grad:
                                        param.grad.data.zero_()
                                    else:
                                        param.grad.data.mul_(100 / max_grad)
                        if running_max_grad < max_grad:
                            running_max_grad = max_grad
                            running_max_grad_name = max_grad_name

                        if 100000 < max_grad:
                            torch.save(self.state_dict(), "bad_model.pyt")
                            raise RuntimeError(
                                "Aborting due to crazy gradient (model saved to bad_model.pyt)"
                            )

                # optimization
                optimiser.step()

                # loss logging
                running_loss_c += loss_c.item()
                running_loss_f += loss_f.item()
                running_loss_vq += vq_pen.item()
                running_loss_vqc += encoder_pen.item()
                running_entropy += entropy

                self.after_update()

                speed = (i + 1) / (time.time() - start)
                avg_loss_c = running_loss_c / (i + 1)
                avg_loss_f = running_loss_f / (i + 1)
                avg_loss_vq = running_loss_vq / (i + 1)
                avg_loss_vqc = running_loss_vqc / (i + 1)
                avg_entropy = running_entropy / (i + 1)

                step += 1
                k = step // 1000

                # tensorboard writer
                writer.add_scalars(
                    'Train/loss_group', {
                        'loss_c': loss_c.item(),
                        'loss_f': loss_f.item(),
                        'vq': vq_pen.item(),
                        'vqc': encoder_pen.item(),
                        'entropy': entropy,
                    }, step - 1)

            os.makedirs(paths.checkpoint_dir, exist_ok=True)
            torch.save(
                {
                    'epoch': e,
                    'state_dict': self.state_dict(),
                    'optimiser': optimiser.state_dict(),
                    'step': step
                }, paths.model_path())
            # torch.save(self.state_dict(), paths.model_path())
            # np.save(paths.step_path(), step)

            if e % test_epochs == 0:
                torch.save(
                    {
                        'epoch': e,
                        'state_dict': self.state_dict(),
                        'optimiser': optimiser.state_dict(),
                        'step': step
                    }, paths.model_hist_path(step))
                self.do_test(writer, e, step, dataset.path, valid_index)
                self.do_test_generate(paths, step, dataset.path, valid_index)

            # finish an epoch

        print("finish training.")