def evaluate_mAP(val_loader, model, configs, logger): batch_time = AverageMeter('Time', ':6.3f') data_time = AverageMeter('Data', ':6.3f') progress = ProgressMeter(len(val_loader), [batch_time, data_time], prefix="Evaluation phase...") labels = [] sample_metrics = [] # List of tuples (TP, confs, pred) # switch to evaluate mode model.eval() with torch.no_grad(): start_time = time.time() for batch_idx, batch_data in enumerate(tqdm(val_loader)): data_time.update(time.time() - start_time) _, imgs, targets = batch_data # Extract labels labels += targets[:, 1].tolist() # Rescale x, y, w, h of targets ((box_idx, class, x, y, z, h, w, l, im, re)) targets[:, 2:4] *= configs.img_size targets[:, 5:8] *= configs.img_size imgs = imgs.to(configs.device, non_blocking=True) outputs = model(imgs) outputs = post_processing_v2(outputs, conf_thresh=configs.conf_thresh, nms_thresh=configs.nms_thresh) sample_metrics += get_batch_statistics_rotated_bbox( outputs, targets, iou_threshold=configs.iou_thresh) # measure elapsed time # torch.cuda.synchronize() batch_time.update(time.time() - start_time) # Log message if logger is not None: if ((batch_idx + 1) % configs.print_freq) == 0: logger.info(progress.get_message(batch_idx)) start_time = time.time() # Concatenate sample statistics true_positives, pred_scores, pred_labels = [ np.concatenate(x, 0) for x in list(zip(*sample_metrics)) ] precision, recall, AP, f1, ap_class = ap_per_class( true_positives, pred_scores, pred_labels, labels) return precision, recall, AP, f1, ap_class
def callback(self,data): rospy.loginfo("detection") with torch.no_grad(): gen = point_cloud2.read_points(data) for idx, p in enumerate(gen): print(idx) print(p) b = kitti_bev_utils.removePoints(gen, cnf.boundary) imgs_bev = kitti_bev_utils.makeBVFeature(b, cnf.DISCRETIZATION, cnf.boundary) input_imgs = imgs_bev.to(device=configs.device).float() t1 = time_synchronized() outputs = self.model(input_imgs) t2 = time_synchronized() detections = post_processing_v2(outputs, conf_thresh=configs.conf_thresh, nms_thresh=configs.nms_thresh) img_detections = [] # Stores detections for each image index img_detections.extend(detections) img_bev = imgs_bev.squeeze() * 255 img_bev = img_bev.permute(1, 2, 0).numpy().astype(np.uint8) img_bev = cv2.resize(img_bev, (configs.img_size, configs.img_size)) for detections in img_detections: if detections is None: continue # Rescale boxes to original image detections = rescale_boxes(detections, configs.img_size, img_bev.shape[:2]) for x, y, w, l, im, re, *_, cls_pred in detections: yaw = np.arctan2(im, re) # Draw rotated box kitti_bev_utils.drawRotatedBox(img_bev, x, y, w, l, yaw, cnf.colors[int(cls_pred)]) img_bev = cv2.flip(cv2.flip(img_bev, 0), 1) out_img = img_bev cv2.imshow('test-img', out_img) cv2.waitKey(1)
'cpu' if configs.no_cuda else 'cuda:{}'.format(configs.gpu_idx)) model = model.to(device=configs.device) out_cap = None model.eval() test_dataloader = create_test_dataloader(configs) with torch.no_grad(): for batch_idx, (img_paths, imgs_bev) in enumerate(test_dataloader): input_imgs = imgs_bev.to(device=configs.device).float() t1 = time_synchronized() outputs = model(input_imgs) t2 = time_synchronized() detections = post_processing_v2(outputs, conf_thresh=configs.conf_thresh, nms_thresh=configs.nms_thresh) img_detections = [] # Stores detections for each image index img_detections.extend(detections) img_bev = imgs_bev.squeeze() * 255 img_bev = img_bev.permute(1, 2, 0).numpy().astype(np.uint8) img_bev = cv2.resize(img_bev, (configs.img_size, configs.img_size)) for detections in img_detections: if detections is None: continue # Rescale boxes to original image detections = rescale_boxes(detections, configs.img_size, img_bev.shape[:2]) for x, y, w, l, im, re, *_, cls_pred in detections:
def client_recv(self, client, address): while True: # read message from socket # client_msg_0\x00\x00\x00\x00\x00... msg = client.recv(1024).decode("utf-8") msg = msg.rstrip("\x00") if msg == '': return if msg == "EOF": return elif msg == "quit_client": client.close() # self.sock.close() print("> client exit...") return elif msg == "quit_server": client.close() self.sock.close() print("> server exit...") sys.exit(0) else: print("> -------", time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time())), "-------") print("> receive the msg from client : {0}".format(msg)) print('> inference for {0}'.format(msg)) if(self.need_create_window): # NOTE ObjSLAM cv2.namedWindow("YOLO", flags=cv2.WINDOW_GUI_NORMAL) self.need_create_window = False # Inference with torch.no_grad(): # img_paths, imgs_bev = self.test_dataloader_iter.next() img_paths, imgs_bev = self.test_dataset[int(msg)] img_paths = [img_paths] imgs_bev = torch.from_numpy( np.expand_dims(imgs_bev, axis=0)) input_imgs = imgs_bev.to( device=self.configs.device).float() outputs = self.model(input_imgs) detections = post_processing_v2( outputs, conf_thresh=self.configs.conf_thresh, nms_thresh=self.configs.nms_thresh) img_detections = [] # Stores detections for each image index img_detections.extend(detections) img_bev = imgs_bev.squeeze() * 255 img_bev = img_bev.permute(1, 2, 0).numpy().astype(np.uint8) img_bev = cv2.resize( img_bev, (self.configs.img_size, self.configs.img_size)) for detections in img_detections: if detections is None: continue # Rescale boxes to original image detections = rescale_boxes( detections, self.configs.img_size, img_bev.shape[:2]) for x, y, w, l, im, re, *_, cls_pred in detections: yaw = np.arctan2(im, re) # Draw rotated box kitti_bev_utils.drawRotatedBox( img_bev, x, y, w, l, yaw, cnf.colors[int(cls_pred)]) img_rgb = cv2.imread(img_paths[0]) calib = kitti_data_utils.Calibration(img_paths[0].replace( ".png", ".txt").replace("image_2", "calib")) objects_pred = predictions_to_kitti_format( img_detections, calib, img_rgb.shape, self.configs.img_size) # NOTE: 输出json的代码 frame_object_list = [] for i in objects_pred: frame_object = dict() frame_object['type'] = i.type frame_object['center'] = i.t frame_object['length'] = i.l frame_object['width'] = i.w frame_object['height'] = i.h frame_object['theta'] = i.ry box3d_pts_2d, _ = kitti_data_utils.compute_box_3d( i, calib.P) if box3d_pts_2d is None: frame_object['box3d_pts_2d'] = box3d_pts_2d elif box3d_pts_2d.size == 16: frame_object['box3d_pts_2d'] = box3d_pts_2d else: frame_object['box3d_pts_2d'] = box3d_pts_2d[:8, :] frame_object_list.append(frame_object) result = json.dumps(frame_object_list, cls=NumpyEncoder) img_bev = cv2.flip(cv2.flip(img_bev, 0), 1) scale = 1.5 cv2.resizeWindow("YOLO", width=int(img_bev.shape[1] * scale), height=int(img_bev.shape[0] * scale)) cv2.imshow('YOLO', img_bev) cv2.waitKey(10) self.batch_idx += 1 if len(result) > self.configs.max_length: print("> WARNING: STRING IS TOO LONG! (MAX_LENGTH {0})".format( self.configs.max_length)) client.send(result.encode(encoding='utf-8')) print("> send the responce back to client, string length: {0}".format( len(result))) return