trans_test_data, trans_test_label, _, _, _, _ = read_csv( trans_test_path, split_ratio=split_ratio, header=True, ignore_cols=["POL_ID", "DATA_MONTH", "TB_POL_BILL_MODE_CD", "MI"], output_label="Lapse_Flag") print(trans_train_data[0]) print("Train Data Size - ", len(trans_train_data)) print("Test Data Size - ", len(trans_test_data)) print("Splitting the data...") # train_x = divide_batches_gen(trans_train_data, batch_size) train_y = divide_batches(trans_train_label, batch_size) # test_x = divide_batches_gen(trans_test_data, batch_size) test_y = divide_batches(trans_test_label, batch_size) train_batch_size = len(train_y) test_batch_size = len(test_y) logdir = "../tensorboard/transaction_model/" + datetime.datetime.now( ).strftime("%Y%m%d-%H%M%S") saved_model_dir = "../maxlife_models/" if not os.path.isdir(saved_model_dir): os.mkdir(saved_model_dir) saved_model = saved_model_dir + model_name
print("lstm data") print(lstm_train_data[0]) print(len(lstm_train_data[0])) # pos_weight = len(ffn_train_label) / sum(ffn_train_label) pos_weight = np.count_nonzero(ffn_train_label == 0) / np.count_nonzero( ffn_train_label == 1) print("Train Data Size - ", len(ffn_train_data)) print("Creating batches...") # train_x = divide_batches_gen(ffn_train_data, batch_size) train_y = divide_batches(ffn_train_label, batch_size) train_batch_size = len(train_y) saved_model_dir = "../maxlife_models/" if not os.path.isdir(saved_model_dir): os.mkdir(saved_model_dir) saved_model = saved_model_dir + model_name ckpt = tf.train.latest_checkpoint(saved_model) filename = ".".join([ckpt, 'meta']) model_saver = tf.train.import_meta_graph(filename, clear_devices=True) with tf.device("/GPU:0"): with tf.Session() as sess: # sess.run(init)
split_ratio = [100, 0, 0] print("Reading the data...") inference_data, inference_label, _, _, _, _ = read_csv( infer_path, split_ratio=split_ratio, header=True, ignore_cols=["POL_ID", "DATA_MONTH"], output_label="Lapse_Flag") print(inference_data[0]) print("Infer Data Size - ", len(inference_data)) print("Splitting the data...") infer_y = divide_batches(inference_label, batch_size) infer_batch_size = len(infer_y) saved_model_dir = "../maxlife_models/" if not os.path.isdir(saved_model_dir): os.mkdir(saved_model_dir) saved_model = saved_model_dir + model_name ckpt = tf.train.latest_checkpoint(saved_model) filename = ".".join([ckpt, 'meta']) model_saver = tf.train.import_meta_graph(filename, clear_devices=True) with tf.device("/GPU:0"): with tf.Session() as sess: model_saver.restore(sess, ckpt)