def train_model():
    '''Run for several hyper parameters'''
    EPOCH = 300
    parser = local_cifar_parser()
    args = parser.parse_args()

    fim = FileIdManager(ID_STRUCTURE)
    FILE_ID = fim.get_id_from_args(args)
    SAVE_DIR, LOG_DIR, CSV_DIR, PKL_DIR, BOARD_DIR, ASSET_DIR = subdirs5resultdir(
        RESULT_DIR, True)
    SAVE_SUBDIR, PKL_SUBDIR, BOARD_SUBDIR, ASSET_SUBDIR, CSV_SUBDIR = muldir2mulsubdir(
        [SAVE_DIR, PKL_DIR, BOARD_DIR, ASSET_DIR, CSV_DIR], FILE_ID, True)

    # load data
    dm_train, dm_val, dm_test = cifar_manager(dm_type=args.ltype,
                                              nsclass=args.nsclass)
    for v in [dm_train, dm_val, dm_test]:
        v.print_shape()

    model = Model(dm_train, dm_val, dm_test, LOG_DIR + FILE_ID + '.log', args)
    model.build()
    model.set_up_train()
    try:
        model.restore(save_dir=SAVE_SUBDIR)
    except (AttributeError, TypeError):
        model.initialize()
        model.train(epoch=EPOCH, save_dir=SAVE_SUBDIR, board_dir=BOARD_SUBDIR)
        model.restore(save_dir=SAVE_SUBDIR)
    model.prepare_test()
    content = model.test_metric(K_SET)
    write_pkl(content, path=PKL_SUBDIR + 'evaluation.pkl')
    write_dict_csv(dict_=content, path=CSV_SUBDIR + 'evaluation.csv')
def integrate_results_and_preprocess():
    SAVE_DIR, LOG_DIR, CSV_DIR, PKL_DIR, BOARD_DIR, ASSET_DIR = subdirs5resultdir(
        RESULT_DIR, False)
    BOUNDARY = 10
    FILE_KEY = 'evaluation.pkl'

    def get_value(path):
        content = read_pkl(path)
        return np.sum(content['te_te_precision_at_k'])

    max_value = -1
    max_file = None
    for file in sorted(os.listdir(PKL_DIR)):
        PKL_SUBDIR = PKL_DIR + '{}/'.format(file)
        path = PKL_SUBDIR + '{}'.format(FILE_KEY)
        if os.path.exists(path):
            value = get_value(path)
            if max_value < value:
                max_value = value
                max_file = file
    # Get the best file id
    parser = local_cifar_parser()
    args = parser.parse_args()
    fim = FileIdManager(ID_STRUCTURE)
    fim.update_args_with_id(args, max_file)  # update args value
    FILE_ID = fim.get_id_from_args(args)

    SAVE_SUBDIR, PKL_SUBDIR, BOARD_SUBDIR, ASSET_SUBDIR, CSV_SUBDIR = muldir2mulsubdir(
        [SAVE_DIR, PKL_DIR, BOARD_DIR, ASSET_DIR, CSV_DIR], FILE_ID, False)
    # load data
    dm_train, dm_val, dm_test = cifar_manager(dm_type=args.ltype,
                                              nsclass=args.nsclass)
    for v in [dm_train, dm_val, dm_test]:
        v.print_shape()

    model = Model(dm_train, dm_val, dm_test, './test.log', args)
    model.build()
    model.set_up_train()
    model.restore(save_dir=SAVE_SUBDIR)
    model.prepare_test()
    model.prepare_test2()
    META_DIR = RESULT_DIR + 'meta/'
    BESTSAVE_DIR = RESULT_DIR + 'bestsave/'

    # copy file
    if os.path.isdir(BESTSAVE_DIR): remove_dir(BESTSAVE_DIR)
    copy_dir(SAVE_SUBDIR, BESTSAVE_DIR)
    # ======================================================#
    create_muldir(META_DIR)
    store_content = {
        'train_embed': model.train_embed,
        'test_embed': model.test_embed,
        'val_embed': model.val_embed,
        'te_te_distance': model.te_te_distance,
        'te_tr_distance': model.te_tr_distance,
        'val_arg_sort': model.val_arg_sort,
    }
    for v in store_content.keys():
        print("{} : {}".format(v, store_content[v].shape))
    write_pkl(store_content, META_DIR + 'meta.pkl')
Exemple #3
0
def train_model():
    EPOCH = 300

    nk = len(K_SET)
    parser = local_cifar_parser()
    args = parser.parse_args()  # parameter required for model

    fim = FileIdManager(ID_STRUCTURE)
    FILE_ID = fim.get_id_from_args(args)
    SAVE_DIR, LOG_DIR, CSV_DIR, PKL_DIR, BOARD_DIR, ASSET_DIR = subdirs5resultdir(
        RESULT_DIR, True)
    SAVE_SUBDIR, PKL_SUBDIR, BOARD_SUBDIR, ASSET_SUBDIR, CSV_SUBDIR = muldir2mulsubdir(
        [SAVE_DIR, PKL_DIR, BOARD_DIR, ASSET_DIR, CSV_DIR], FILE_ID, True)

    dm_train, dm_val, dm_test = cifar_manager(dm_type=args.ltype,
                                              nsclass=args.nsclass)
    for v in [dm_train, dm_val, dm_test]:
        v.print_shape()

    model = Model(dm_train, dm_val, dm_test, LOG_DIR + FILE_ID + '.log', args)
    model.build()
    meta = read_pkl(args.meta)
    model.restore(args.save)
    model.set_info(val_arg_sort=meta['val_arg_sort'],
                   te_te_distance=meta['te_te_distance'],
                   te_tr_distance=meta['te_tr_distance'])
    model.build_hash()
    model.set_up_train_hash()
    try:
        model.restore(save_dir=SAVE_SUBDIR)
    except (AttributeError, TypeError):
        model.initialize()
        model.train_hash(epoch=EPOCH,
                         save_dir=SAVE_SUBDIR,
                         board_dir=BOARD_SUBDIR)
        model.restore(save_dir=SAVE_SUBDIR)
    model.prepare_test_hash()
    performance = model.test_hash_metric(K_SET)
    model.delete()
    del model
    del dm_train
    del dm_val
    del dm_test

    write_pkl(performance, path=PKL_SUBDIR + 'evaluation.pkl')
    cwrite = CsvWriter2(1)
    key_set = [
        'train_nmi', 'test_nmi', 'te_tr_suf', 'te_te_suf',
        'te_te_precision_at_k', 'te_tr_precision_at_k'
    ]
    for key in key_set:
        cwrite.add_header(0, str(key))
        content = ''
        if 'at_k' in str(key): content = listformat(performance[key])
        else: content = performance[key]
        cwrite.add_content(0, content)
    cwrite.write(CSV_SUBDIR + 'evaluation.csv')
Exemple #4
0
    NITER = 140000
    # PITER = 20000
    PITER = 10000
    SITER = 10000

    parser = local_dsprites_parser()
    args = parser.parse_args() # parameter required for model

    ROOT_DIRS = {
            'dsprites': '/mnt/hdd/repo_results/DisentanglementICML19/Results_dsprites/',
            '3dshapes': '/mnt/hdd/repo_results/DisentanglementICML19/Results_3dshapes/'
            }
    ROOT = ROOT_DIRS[args.dataset]
    RESULT_DIR = ROOT+'{}/'.format(KEY)

    fim = FileIdManager(ID_STRUCTURE)

    np.random.seed(args.rseed)
    FILE_ID = fim.get_id_from_args(args)
    SAVE_DIR, LOG_DIR, ASSET_DIR = subdirs5resultdir(RESULT_DIR, True)
    SAVE_SUBDIR, ASSET_SUBDIR = muldir2mulsubdir([SAVE_DIR, ASSET_DIR], FILE_ID, True)

    if args.dataset == 'dsprites':
        dm = dsprites_manager()
    else:
        dm = shapes_3d_manager()
    dm.print_shape()

    model = Model(dm, LOG_DIR+FILE_ID+'.log', args)
    model.set_up_train()
    model.initialize()