def show_inference(model, image_path): image_np = np.array(image_path) lane_image = copy.deepcopy(image_np) height, width, channel = image_np.shape output_dict = functions.get_dict(dashPointer, model, image_np) confidencesCars, boxesCars, confidencesLights, boxesLights, confidencesPersons, boxesPersons = functions.findBoxes( image_np, output_dict) indexesLights = cv2.dnn.NMSBoxes(boxesLights, confidencesLights, 0.5, 0.4) indexesCars = cv2.dnn.NMSBoxes(boxesCars, confidencesCars, 0.5, 0.4) indexesPersons = cv2.dnn.NMSBoxes(boxesPersons, confidencesPersons, 0.5, 0.4) image_np = signalDetection_utils.signalDetection(indexesLights, boxesLights, image_np) image_np = tracking_utils.tracking(indexesCars, boxesCars, image_np) image_np = estimate_collide_utils.estimate_collide(indexesCars, boxesCars, image_np) image_np = estimate_stepping_utils.estimate_stepping( indexesPersons, boxesPersons, image_np) cv2.putText(image_np, "DAY", (width - 200, 50), font, 2, (167, 133, 0), 2, cv2.LINE_AA) image_np = lane_detection_utils.draw_lines(lanePointer, lane_image, image_np) # lane_detection_utils.all_lines(lanePointer , lane_image , image_np) cv2.imshow("finally", image_np)
def show_inference(dashPointer, lanePointer, frame): global flagPerson, areaPerson, areaDetails global crash_count_frames global signalCounter, flagSignal global prev_frame, number global flagLanes image_np = np.array(frame) lane_image = copy.deepcopy(image_np) height, width, channel = image_np.shape output_dict = functions.get_dict(dashPointer, detection_model, image_np) confidencesCars, boxesCars, confidencesLights, boxesLights, confidencesPersons, boxesPersons = functions.findBoxes( image_np, output_dict) indexesLights = cv2.dnn.NMSBoxes(boxesLights, confidencesLights, 0.5, 0.4) indexesCars = cv2.dnn.NMSBoxes(boxesCars, confidencesCars, 0.5, 0.4) indexesPersons = cv2.dnn.NMSBoxes(boxesPersons, confidencesPersons, 0.5, 0.4) image_np, signalCounter, flagSignal = signalDetection_utils.signalDetection( indexesLights, boxesLights, image_np, signalCounter, flagSignal) image_np, prev_frame, number = tracking_utils.tracking( indexesCars, boxesCars, image_np, prev_frame, number) image_np, crash_count_frames = estimate_collide_utils.estimate_collide( indexesCars, boxesCars, image_np, crash_count_frames) image_np, flagPerson, areaPerson, areaDetails = estimate_stepping_utils.estimate_stepping( indexesPersons, boxesPersons, image_np, flagPerson, areaPerson, areaDetails) cv2.putText(image_np, "DAY", (50, 90), font, 2, (167, 133, 0), 2, cv2.LINE_AA) image_np, flagLanes = lane_detection_utils.draw_lines( lanePointer, dashPointer, lane_image, image_np, flagLanes) # lane_detection_utils.all_lines(lanePointer , lane_image , image_np) cv2.imshow("Final result", image_np)