def model_type(p='path/to/model.pt'): # Return model type from model path, i.e. path='path/to/model.onnx' -> type=onnx from export import export_formats suffixes = list(export_formats().Suffix) + ['.xml'] # export suffixes check_suffix(p, suffixes) # checks p = Path(p).name # eliminate trailing separators pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, xml2 = ( s in p for s in suffixes) xml |= xml2 # *_openvino_model or *.xml tflite &= not edgetpu # *.tflite return pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs
def __init__(self, weights='yolov5s.pt', device=None, dnn=False, data=None): # Usage: # PyTorch: weights = *.pt # TorchScript: *.torchscript # CoreML: *.mlmodel # OpenVINO: *.xml # TensorFlow: *_saved_model # TensorFlow: *.pb # TensorFlow Lite: *.tflite # TensorFlow Edge TPU: *_edgetpu.tflite # ONNX Runtime: *.onnx # OpenCV DNN: *.onnx with dnn=True # TensorRT: *.engine from models.experimental import attempt_download, attempt_load # scoped to avoid circular import super().__init__() w = str(weights[0] if isinstance(weights, list) else weights) suffix = Path(w).suffix.lower() suffixes = [ '.pt', '.torchscript', '.onnx', '.engine', '.tflite', '.pb', '', '.mlmodel', '.xml' ] check_suffix(w, suffixes) # check weights have acceptable suffix pt, jit, onnx, engine, tflite, pb, saved_model, coreml, xml = ( suffix == x for x in suffixes) # backends stride, names = 64, [f'class{i}' for i in range(1000)] # assign defaults w = attempt_download(w) # download if not local if data: # data.yaml path (optional) with open(data, errors='ignore') as f: names = yaml.safe_load(f)['names'] # class names if pt: # PyTorch model = attempt_load(weights if isinstance(weights, list) else w, map_location=device) stride = max(int(model.stride.max()), 32) # model stride names = model.module.names if hasattr( model, 'module') else model.names # get class names self.model = model # explicitly assign for to(), cpu(), cuda(), half() elif jit: # TorchScript LOGGER.info(f'Loading {w} for TorchScript inference...') extra_files = {'config.txt': ''} # model metadata model = torch.jit.load(w, _extra_files=extra_files) if extra_files['config.txt']: d = json.loads(extra_files['config.txt']) # extra_files dict stride, names = int(d['stride']), d['names'] elif dnn: # ONNX OpenCV DNN LOGGER.info(f'Loading {w} for ONNX OpenCV DNN inference...') check_requirements(('opencv-python>=4.5.4', )) net = cv2.dnn.readNetFromONNX(w) elif onnx: # ONNX Runtime LOGGER.info(f'Loading {w} for ONNX Runtime inference...') cuda = torch.cuda.is_available() check_requirements( ('onnx', 'onnxruntime-gpu' if cuda else 'onnxruntime')) import onnxruntime providers = ['CUDAExecutionProvider', 'CPUExecutionProvider' ] if cuda else ['CPUExecutionProvider'] session = onnxruntime.InferenceSession(w, providers=providers) elif xml: # OpenVINO LOGGER.info(f'Loading {w} for OpenVINO inference...') check_requirements( ('openvino-dev', ) ) # requires openvino-dev: https://pypi.org/project/openvino-dev/ import openvino.inference_engine as ie core = ie.IECore() network = core.read_network( model=w, weights=Path(w).with_suffix('.bin')) # *.xml, *.bin paths executable_network = core.load_network(network, device_name='CPU', num_requests=1) elif engine: # TensorRT LOGGER.info(f'Loading {w} for TensorRT inference...') import tensorrt as trt # https://developer.nvidia.com/nvidia-tensorrt-download check_version(trt.__version__, '7.0.0', hard=True) # require tensorrt>=7.0.0 Binding = namedtuple('Binding', ('name', 'dtype', 'shape', 'data', 'ptr')) logger = trt.Logger(trt.Logger.INFO) with open(w, 'rb') as f, trt.Runtime(logger) as runtime: model = runtime.deserialize_cuda_engine(f.read()) bindings = OrderedDict() for index in range(model.num_bindings): name = model.get_binding_name(index) dtype = trt.nptype(model.get_binding_dtype(index)) shape = tuple(model.get_binding_shape(index)) data = torch.from_numpy(np.empty( shape, dtype=np.dtype(dtype))).to(device) bindings[name] = Binding(name, dtype, shape, data, int(data.data_ptr())) binding_addrs = OrderedDict( (n, d.ptr) for n, d in bindings.items()) context = model.create_execution_context() batch_size = bindings['images'].shape[0] elif coreml: # CoreML LOGGER.info(f'Loading {w} for CoreML inference...') import coremltools as ct model = ct.models.MLModel(w) else: # TensorFlow (SavedModel, GraphDef, Lite, Edge TPU) if saved_model: # SavedModel LOGGER.info( f'Loading {w} for TensorFlow SavedModel inference...') import tensorflow as tf model = tf.keras.models.load_model(w) elif pb: # GraphDef https://www.tensorflow.org/guide/migrate#a_graphpb_or_graphpbtxt LOGGER.info( f'Loading {w} for TensorFlow GraphDef inference...') import tensorflow as tf def wrap_frozen_graph(gd, inputs, outputs): x = tf.compat.v1.wrap_function( lambda: tf.compat.v1.import_graph_def(gd, name=""), []) # wrapped return x.prune( tf.nest.map_structure(x.graph.as_graph_element, inputs), tf.nest.map_structure(x.graph.as_graph_element, outputs)) graph_def = tf.Graph().as_graph_def() graph_def.ParseFromString(open(w, 'rb').read()) frozen_func = wrap_frozen_graph(gd=graph_def, inputs="x:0", outputs="Identity:0") elif tflite: # https://www.tensorflow.org/lite/guide/python#install_tensorflow_lite_for_python try: import tflite_runtime.interpreter as tfl # prefer tflite_runtime if installed except ImportError: import tensorflow.lite as tfl if 'edgetpu' in w.lower( ): # Edge TPU https://coral.ai/software/#edgetpu-runtime LOGGER.info( f'Loading {w} for TensorFlow Lite Edge TPU inference...' ) delegate = { 'Linux': 'libedgetpu.so.1', 'Darwin': 'libedgetpu.1.dylib', 'Windows': 'edgetpu.dll' }[platform.system()] interpreter = tfl.Interpreter( model_path=w, experimental_delegates=[tfl.load_delegate(delegate)]) else: # Lite LOGGER.info( f'Loading {w} for TensorFlow Lite inference...') interpreter = tfl.Interpreter( model_path=w) # load TFLite model interpreter.allocate_tensors() # allocate input_details = interpreter.get_input_details() # inputs output_details = interpreter.get_output_details() # outputs self.__dict__.update(locals()) # assign all variables to self
def run( weights=ROOT / 'yolov5s.pt', # model.pt path(s) source=ROOT / 'data/images', # file/dir/URL/glob, 0 for webcam imgsz=640, # inference size (pixels) conf_thres=0.25, # confidence threshold iou_thres=0.45, # NMS IOU threshold max_det=1000, # maximum detections per image device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu view_img=False, # show results save_txt=False, # save results to *.txt save_conf=False, # save confidences in --save-txt labels save_crop=False, # save cropped prediction boxes nosave=False, # do not save images/videos classes=None, # filter by class: --class 0, or --class 0 2 3 agnostic_nms=False, # class-agnostic NMS augment=False, # augmented inference visualize=False, # visualize features update=False, # update all models project=ROOT / 'runs/detect', # save results to project/name name='exp', # save results to project/name exist_ok=False, # existing project/name ok, do not increment line_thickness=3, # bounding box thickness (pixels) hide_labels=False, # hide labels hide_conf=False, # hide confidences half=False, # use FP16 half-precision inference dnn=False, # use OpenCV DNN for ONNX inference ): source = str(source) save_img = not nosave and not source.endswith( '.txt') # save inference images webcam = source.isnumeric() or source.endswith( '.txt') or source.lower().startswith( ('rtsp://', 'rtmp://', 'http://', 'https://')) # Directories save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run (save_dir / 'labels' if save_txt else save_dir).mkdir( parents=True, exist_ok=True) # make dir # Initialize set_logging() device = select_device(device) half &= device.type != 'cpu' # half precision only supported on CUDA # Load model w = str(weights[0] if isinstance(weights, list) else weights) classify, suffix, suffixes = False, Path(w).suffix.lower(), [ '.pt', '.onnx', '.tflite', '.pb', '' ] check_suffix(w, suffixes) # check weights have acceptable suffix pt, onnx, tflite, pb, saved_model = (suffix == x for x in suffixes) # backend booleans stride, names = 64, [f'class{i}' for i in range(1000)] # assign defaults if pt: model = torch.jit.load(w) if 'torchscript' in w else attempt_load( weights, map_location=device, fuse=False) stride = int(model.stride.max()) # model stride names = model.module.names if hasattr( model, 'module') else model.names # get class names """ for _, param in enumerate(model.named_parameters()): print("====>", param[0], param[1].shape) torch.save(model.state_dict(), 'new_params.pt') for k, v in model.state_dict().items(): print(k, v.shape) exit() """ if half: model.half() # to FP16 if classify: # second-stage classifier modelc = load_classifier(name='resnet50', n=2) # initialize modelc.load_state_dict( torch.load('resnet50.pt', map_location=device)['model']).to(device).eval() elif onnx: if dnn: # check_requirements(('opencv-python>=4.5.4',)) net = cv2.dnn.readNetFromONNX(w) else: check_requirements(('onnx', 'onnxruntime')) import onnxruntime session = onnxruntime.InferenceSession(w, None) else: # TensorFlow models check_requirements(('tensorflow>=2.4.1', )) import tensorflow as tf if pb: # https://www.tensorflow.org/guide/migrate#a_graphpb_or_graphpbtxt def wrap_frozen_graph(gd, inputs, outputs): x = tf.compat.v1.wrap_function( lambda: tf.compat.v1.import_graph_def(gd, name=""), []) # wrapped import return x.prune( tf.nest.map_structure(x.graph.as_graph_element, inputs), tf.nest.map_structure(x.graph.as_graph_element, outputs)) graph_def = tf.Graph().as_graph_def() graph_def.ParseFromString(open(w, 'rb').read()) frozen_func = wrap_frozen_graph(gd=graph_def, inputs="x:0", outputs="Identity:0") elif saved_model: model = tf.keras.models.load_model(w) elif tflite: interpreter = tf.lite.Interpreter( model_path=w) # load TFLite model interpreter.allocate_tensors() # allocate input_details = interpreter.get_input_details() # inputs output_details = interpreter.get_output_details() # outputs int8 = input_details[0][ 'dtype'] == np.uint8 # is TFLite quantized uint8 model imgsz = check_img_size(imgsz, s=stride) # check image size # Dataloader if webcam: view_img = check_imshow() cudnn.benchmark = True # set True to speed up constant image size inference dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt) bs = len(dataset) # batch_size else: dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt) bs = 1 # batch_size vid_path, vid_writer = [None] * bs, [None] * bs # Run inference if pt and device.type != 'cpu': model( torch.zeros(1, 3, *imgsz).to(device).type_as( next(model.parameters()))) # run once dt, seen = [0.0, 0.0, 0.0], 0 for path, img, im0s, vid_cap in dataset: t1 = time_sync() if onnx: img = img.astype('float32') else: img = torch.from_numpy(img).to(device) img = img.half() if half else img.float() # uint8 to fp16/32 img = img / 255.0 # 0 - 255 to 0.0 - 1.0 if len(img.shape) == 3: img = img[None] # expand for batch dim t2 = time_sync() dt[0] += t2 - t1 # Inference if pt: visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False pred = model(img, augment=augment, visualize=visualize)[0] anchor_grid = model.model[-1].anchors * model.model[-1].stride[ ..., None, None] delattr(model.model[-1], 'anchor_grid') # model.model[-1] is detect layer model.model[-1].register_buffer("anchor_grid", anchor_grid) model.to(device).eval() wts_file = "generated.wts" with open(wts_file, 'w') as f: f.write('{}\n'.format(len(model.state_dict().keys()))) for k, v in model.state_dict().items(): if len(v.shape) == 0: continue print(k, v.shape) vr = v.reshape(-1).cpu().numpy() f.write('{} {} {} {}'.format( k, len(vr), v.shape[0], v.shape[1] if len(v.shape) > 1 else 0)) for vv in vr: f.write(' ') f.write(struct.pack('>f', float(vv)).hex()) f.write('\n') exit() elif onnx: if dnn: net.setInput(img) pred = torch.tensor(net.forward()) else: pred = torch.tensor( session.run([session.get_outputs()[0].name], {session.get_inputs()[0].name: img})) else: # tensorflow model (tflite, pb, saved_model) imn = img.permute(0, 2, 3, 1).cpu().numpy() # image in numpy if pb: pred = frozen_func(x=tf.constant(imn)).numpy() elif saved_model: pred = model(imn, training=False).numpy() elif tflite: if int8: scale, zero_point = input_details[0]['quantization'] imn = (imn / scale + zero_point).astype( np.uint8) # de-scale interpreter.set_tensor(input_details[0]['index'], imn) interpreter.invoke() pred = interpreter.get_tensor(output_details[0]['index']) if int8: scale, zero_point = output_details[0]['quantization'] pred = (pred.astype(np.float32) - zero_point) * scale # re-scale pred[..., 0] *= imgsz[1] # x pred[..., 1] *= imgsz[0] # y pred[..., 2] *= imgsz[1] # w pred[..., 3] *= imgsz[0] # h pred = torch.tensor(pred) t3 = time_sync() dt[1] += t3 - t2 # NMS pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det) dt[2] += time_sync() - t3 # Second-stage classifier (optional) if classify: pred = apply_classifier(pred, modelc, img, im0s) # Process predictions for i, det in enumerate(pred): # per image seen += 1 if webcam: # batch_size >= 1 p, s, im0, frame = path[i], f'{i}: ', im0s[i].copy( ), dataset.count else: p, s, im0, frame = path, '', im0s.copy(), getattr( dataset, 'frame', 0) p = Path(p) # to Path save_path = str(save_dir / p.name) # img.jpg txt_path = str(save_dir / 'labels' / p.stem) + ( '' if dataset.mode == 'image' else f'_{frame}') # img.txt s += '%gx%g ' % img.shape[2:] # print string gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh imc = im0.copy() if save_crop else im0 # for save_crop annotator = Annotator(im0, line_width=line_thickness, example=str(names)) if len(det): # Rescale boxes from img_size to im0 size det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round() # Print results for c in det[:, -1].unique(): n = (det[:, -1] == c).sum() # detections per class s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string # Write results for *xyxy, conf, cls in reversed(det): if save_txt: # Write to file xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format with open(txt_path + '.txt', 'a') as f: f.write(('%g ' * len(line)).rstrip() % line + '\n') if save_img or save_crop or view_img: # Add bbox to image c = int(cls) # integer class label = None if hide_labels else ( names[c] if hide_conf else f'{names[c]} {conf:.2f}') annotator.box_label(xyxy, label, color=colors(c, True)) if save_crop: save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True) # Print time (inference-only) print(f'{s}Done. ({t3 - t2:.3f}s)') # Stream results im0 = annotator.result() if view_img: cv2.imshow(str(p), im0) cv2.waitKey(1) # 1 millisecond # Save results (image with detections) if save_img: if dataset.mode == 'image': cv2.imwrite(save_path, im0) else: # 'video' or 'stream' if vid_path[i] != save_path: # new video vid_path[i] = save_path if isinstance(vid_writer[i], cv2.VideoWriter): vid_writer[i].release( ) # release previous video writer if vid_cap: # video fps = vid_cap.get(cv2.CAP_PROP_FPS) w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH)) h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) else: # stream fps, w, h = 30, im0.shape[1], im0.shape[0] save_path += '.mp4' vid_writer[i] = cv2.VideoWriter( save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h)) vid_writer[i].write(im0) # Print results t = tuple(x / seen * 1E3 for x in dt) # speeds per image print( f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t) if save_txt or save_img: s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else '' print(f"Results saved to {colorstr('bold', save_dir)}{s}") if update: strip_optimizer(weights) # update model (to fix SourceChangeWarning)
def train( hyp, # path/to/hyp.yaml or hyp dictionary opt, device, callbacks): save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, noval, nosave, workers, freeze = \ Path(opt.save_dir), opt.epochs, opt.batch_size, opt.weights, opt.single_cls, opt.evolve, opt.data, opt.cfg, \ opt.resume, opt.noval, opt.nosave, opt.workers, opt.freeze # Directories w = save_dir / 'weights' # weights dir (w.parent if evolve else w).mkdir(parents=True, exist_ok=True) # make dir last, best = w / 'last.pt', w / 'best.pt' # Hyperparameters if isinstance(hyp, str): with open(hyp, errors='ignore') as f: hyp = yaml.safe_load(f) # load hyps dict LOGGER.info( colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items())) # Save run settings if not evolve: with open(save_dir / 'hyp.yaml', 'w') as f: yaml.safe_dump(hyp, f, sort_keys=False) with open(save_dir / 'opt.yaml', 'w') as f: yaml.safe_dump(vars(opt), f, sort_keys=False) # Loggers data_dict = None if RANK in [-1, 0]: loggers = Loggers(save_dir, weights, opt, hyp, LOGGER) # loggers instance if loggers.wandb: data_dict = loggers.wandb.data_dict if resume: weights, epochs, hyp, batch_size = opt.weights, opt.epochs, opt.hyp, opt.batch_size # Register actions for k in methods(loggers): callbacks.register_action(k, callback=getattr(loggers, k)) # Config plots = not evolve # create plots cuda = device.type != 'cpu' init_seeds(1 + RANK) with torch_distributed_zero_first(LOCAL_RANK): data_dict = data_dict or check_dataset(data) # check if None train_path, val_path = data_dict['train'], data_dict['val'] nc = 1 if single_cls else int(data_dict['nc']) # number of classes names = ['item'] if single_cls and len( data_dict['names']) != 1 else data_dict['names'] # class names assert len( names ) == nc, f'{len(names)} names found for nc={nc} dataset in {data}' # check is_coco = isinstance(val_path, str) and val_path.endswith( 'coco/val2017.txt') # COCO dataset # Model check_suffix(weights, '.pt') # check weights pretrained = weights.endswith('.pt') if pretrained: with torch_distributed_zero_first(LOCAL_RANK): weights = attempt_download( weights) # download if not found locally ckpt = torch.load(weights, map_location='cpu' ) # load checkpoint to CPU to avoid CUDA memory leak model = Model(cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create exclude = [ 'anchor' ] if (cfg or hyp.get('anchors')) and not resume else [] # exclude keys csd = ckpt['model'].float().state_dict( ) # checkpoint state_dict as FP32 csd = intersect_dicts(csd, model.state_dict(), exclude=exclude) # intersect model.load_state_dict(csd, strict=False) # load LOGGER.info( f'Transferred {len(csd)}/{len(model.state_dict())} items from {weights}' ) # report else: model = Model(cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create # Freeze freeze = [ f'model.{x}.' for x in (freeze if len(freeze) > 1 else range(freeze[0])) ] # layers to freeze for k, v in model.named_parameters(): v.requires_grad = True # train all layers if any(x in k for x in freeze): LOGGER.info(f'freezing {k}') v.requires_grad = False # Image size gs = max(int(model.stride.max()), 32) # grid size (max stride) imgsz = check_img_size(opt.imgsz, gs, floor=gs * 2) # verify imgsz is gs-multiple # Batch size if RANK == -1 and batch_size == -1: # single-GPU only, estimate best batch size batch_size = check_train_batch_size(model, imgsz) loggers.on_params_update({"batch_size": batch_size}) # Optimizer nbs = 64 # nominal batch size accumulate = max(round(nbs / batch_size), 1) # accumulate loss before optimizing hyp['weight_decay'] *= batch_size * accumulate / nbs # scale weight_decay LOGGER.info(f"Scaled weight_decay = {hyp['weight_decay']}") g0, g1, g2 = [], [], [] # optimizer parameter groups for v in model.modules(): if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter): # bias g2.append(v.bias) if isinstance(v, nn.BatchNorm2d): # weight (no decay) g0.append(v.weight) elif hasattr(v, 'weight') and isinstance( v.weight, nn.Parameter): # weight (with decay) g1.append(v.weight) if opt.optimizer == 'Adam': optimizer = Adam(g0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum elif opt.optimizer == 'AdamW': optimizer = AdamW(g0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum else: optimizer = SGD(g0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True) optimizer.add_param_group({ 'params': g1, 'weight_decay': hyp['weight_decay'] }) # add g1 with weight_decay optimizer.add_param_group({'params': g2}) # add g2 (biases) LOGGER.info( f"{colorstr('optimizer:')} {type(optimizer).__name__} with parameter groups " f"{len(g0)} weight (no decay), {len(g1)} weight, {len(g2)} bias") del g0, g1, g2 # Scheduler if opt.cos_lr: lf = one_cycle(1, hyp['lrf'], epochs) # cosine 1->hyp['lrf'] else: lf = lambda x: (1 - x / epochs) * (1.0 - hyp['lrf']) + hyp['lrf' ] # linear scheduler = lr_scheduler.LambdaLR( optimizer, lr_lambda=lf) # plot_lr_scheduler(optimizer, scheduler, epochs) # EMA ema = ModelEMA(model) if RANK in [-1, 0] else None # Resume start_epoch, best_fitness = 0, 0.0 if pretrained: # Optimizer if ckpt['optimizer'] is not None: optimizer.load_state_dict(ckpt['optimizer']) best_fitness = ckpt['best_fitness'] # EMA if ema and ckpt.get('ema'): ema.ema.load_state_dict(ckpt['ema'].float().state_dict()) ema.updates = ckpt['updates'] # Epochs start_epoch = ckpt['epoch'] + 1 if resume: assert start_epoch > 0, f'{weights} training to {epochs} epochs is finished, nothing to resume.' if epochs < start_epoch: LOGGER.info( f"{weights} has been trained for {ckpt['epoch']} epochs. Fine-tuning for {epochs} more epochs." ) epochs += ckpt['epoch'] # finetune additional epochs del ckpt, csd # DP mode if cuda and RANK == -1 and torch.cuda.device_count() > 1: LOGGER.warning( 'WARNING: DP not recommended, use torch.distributed.run for best DDP Multi-GPU results.\n' 'See Multi-GPU Tutorial at https://github.com/ultralytics/yolov5/issues/475 to get started.' ) model = torch.nn.DataParallel(model) # SyncBatchNorm if opt.sync_bn and cuda and RANK != -1: model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device) LOGGER.info('Using SyncBatchNorm()') # Trainloader train_loader, dataset = create_dataloader( train_path, imgsz, batch_size // WORLD_SIZE, gs, single_cls, hyp=hyp, augment=True, cache=None if opt.cache == 'val' else opt.cache, rect=opt.rect, rank=LOCAL_RANK, workers=workers, image_weights=opt.image_weights, quad=opt.quad, prefix=colorstr('train: '), shuffle=True) mlc = int(np.concatenate(dataset.labels, 0)[:, 0].max()) # max label class nb = len(train_loader) # number of batches assert mlc < nc, f'Label class {mlc} exceeds nc={nc} in {data}. Possible class labels are 0-{nc - 1}' # Process 0 if RANK in [-1, 0]: val_loader = create_dataloader(val_path, imgsz, batch_size // WORLD_SIZE * 2, gs, single_cls, hyp=hyp, cache=None if noval else opt.cache, rect=True, rank=-1, workers=workers * 2, pad=0.5, prefix=colorstr('val: '))[0] if not resume: labels = np.concatenate(dataset.labels, 0) # c = torch.tensor(labels[:, 0]) # classes # cf = torch.bincount(c.long(), minlength=nc) + 1. # frequency # model._initialize_biases(cf.to(device)) if plots: plot_labels(labels, names, save_dir) # Anchors if not opt.noautoanchor: check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz) model.half().float() # pre-reduce anchor precision callbacks.run('on_pretrain_routine_end') # DDP mode if cuda and RANK != -1: model = DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK) # Model attributes nl = de_parallel( model).model[-1].nl # number of detection layers (to scale hyps) hyp['box'] *= 3 / nl # scale to layers hyp['cls'] *= nc / 80 * 3 / nl # scale to classes and layers hyp['obj'] *= (imgsz / 640)**2 * 3 / nl # scale to image size and layers hyp['label_smoothing'] = opt.label_smoothing model.nc = nc # attach number of classes to model model.hyp = hyp # attach hyperparameters to model model.class_weights = labels_to_class_weights( dataset.labels, nc).to(device) * nc # attach class weights model.names = names # Start training t0 = time.time() nw = max(round(hyp['warmup_epochs'] * nb), 1000) # number of warmup iterations, max(3 epochs, 1k iterations) # nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training last_opt_step = -1 maps = np.zeros(nc) # mAP per class results = (0, 0, 0, 0, 0, 0, 0 ) # P, R, [email protected], [email protected], val_loss(box, obj, cls) scheduler.last_epoch = start_epoch - 1 # do not move scaler = amp.GradScaler(enabled=cuda) stopper = EarlyStopping(patience=opt.patience) compute_loss = ComputeLoss(model) # init loss class LOGGER.info( f'Image sizes {imgsz} train, {imgsz} val\n' f'Using {train_loader.num_workers * WORLD_SIZE} dataloader workers\n' f"Logging results to {colorstr('bold', save_dir)}\n" f'Starting training for {epochs} epochs...') for epoch in range( start_epoch, epochs ): # epoch ------------------------------------------------------------------ model.train() # Update image weights (optional, single-GPU only) if opt.image_weights: cw = model.class_weights.cpu().numpy() * ( 1 - maps)**2 / nc # class weights iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx # Update mosaic border (optional) # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs) # dataset.mosaic_border = [b - imgsz, -b] # height, width borders mloss = torch.zeros(3, device=device) # mean losses if RANK != -1: train_loader.sampler.set_epoch(epoch) pbar = enumerate(train_loader) LOGGER.info( ('\n' + '%10s' * 7) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'labels', 'img_size')) if RANK in [-1, 0]: pbar = tqdm( pbar, total=nb, bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}') # progress bar optimizer.zero_grad() for i, ( imgs, targets, paths, _ ) in pbar: # batch ------------------------------------------------------------- ni = i + nb * epoch # number integrated batches (since train start) imgs = imgs.to(device, non_blocking=True).float( ) / 255 # uint8 to float32, 0-255 to 0.0-1.0 # Warmup if ni <= nw: xi = [0, nw] # x interp # compute_loss.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou) accumulate = max( 1, np.interp(ni, xi, [1, nbs / batch_size]).round()) for j, x in enumerate(optimizer.param_groups): # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0 x['lr'] = np.interp(ni, xi, [ hyp['warmup_bias_lr'] if j == 2 else 0.0, x['initial_lr'] * lf(epoch) ]) if 'momentum' in x: x['momentum'] = np.interp( ni, xi, [hyp['warmup_momentum'], hyp['momentum']]) # Multi-scale if opt.multi_scale: sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs # size sf = sz / max(imgs.shape[2:]) # scale factor if sf != 1: ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:] ] # new shape (stretched to gs-multiple) imgs = nn.functional.interpolate(imgs, size=ns, mode='bilinear', align_corners=False) # Forward with amp.autocast(enabled=cuda): pred = model(imgs) # forward loss, loss_items = compute_loss( pred, targets.to(device)) # loss scaled by batch_size if RANK != -1: loss *= WORLD_SIZE # gradient averaged between devices in DDP mode if opt.quad: loss *= 4. # Backward scaler.scale(loss).backward() # Optimize if ni - last_opt_step >= accumulate: scaler.step(optimizer) # optimizer.step scaler.update() optimizer.zero_grad() if ema: ema.update(model) last_opt_step = ni # Log if RANK in [-1, 0]: mloss = (mloss * i + loss_items) / (i + 1 ) # update mean losses mem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G' # (GB) pbar.set_description(('%10s' * 2 + '%10.4g' * 5) % (f'{epoch}/{epochs - 1}', mem, *mloss, targets.shape[0], imgs.shape[-1])) callbacks.run('on_train_batch_end', ni, model, imgs, targets, paths, plots, opt.sync_bn) if callbacks.stop_training: return # end batch ------------------------------------------------------------------------------------------------ # Scheduler lr = [x['lr'] for x in optimizer.param_groups] # for loggers scheduler.step() if RANK in [-1, 0]: # mAP callbacks.run('on_train_epoch_end', epoch=epoch) ema.update_attr(model, include=[ 'yaml', 'nc', 'hyp', 'names', 'stride', 'class_weights' ]) final_epoch = (epoch + 1 == epochs) or stopper.possible_stop if not noval or final_epoch: # Calculate mAP results, maps, _ = val.run(data_dict, batch_size=batch_size // WORLD_SIZE * 2, imgsz=imgsz, model=ema.ema, single_cls=single_cls, dataloader=val_loader, save_dir=save_dir, plots=False, callbacks=callbacks, compute_loss=compute_loss) # Update best mAP fi = fitness(np.array(results).reshape( 1, -1)) # weighted combination of [P, R, [email protected], [email protected]] if fi > best_fitness: best_fitness = fi log_vals = list(mloss) + list(results) + lr callbacks.run('on_fit_epoch_end', log_vals, epoch, best_fitness, fi) # Save model if (not nosave) or (final_epoch and not evolve): # if save ckpt = { 'epoch': epoch, 'best_fitness': best_fitness, 'model': deepcopy(de_parallel(model)).half(), 'ema': deepcopy(ema.ema).half(), 'updates': ema.updates, 'optimizer': optimizer.state_dict(), 'wandb_id': loggers.wandb.wandb_run.id if loggers.wandb else None, 'date': datetime.now().isoformat() } # Save last, best and delete torch.save(ckpt, last) if best_fitness == fi: torch.save(ckpt, best) if (epoch > 0) and (opt.save_period > 0) and (epoch % opt.save_period == 0): torch.save(ckpt, w / f'epoch{epoch}.pt') del ckpt callbacks.run('on_model_save', last, epoch, final_epoch, best_fitness, fi) # Stop Single-GPU if RANK == -1 and stopper(epoch=epoch, fitness=fi): break # Stop DDP TODO: known issues shttps://github.com/ultralytics/yolov5/pull/4576 # stop = stopper(epoch=epoch, fitness=fi) # if RANK == 0: # dist.broadcast_object_list([stop], 0) # broadcast 'stop' to all ranks # Stop DPP # with torch_distributed_zero_first(RANK): # if stop: # break # must break all DDP ranks # end epoch ---------------------------------------------------------------------------------------------------- # end training ----------------------------------------------------------------------------------------------------- if RANK in [-1, 0]: LOGGER.info( f'\n{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.' ) for f in last, best: if f.exists(): strip_optimizer(f) # strip optimizers if f is best: LOGGER.info(f'\nValidating {f}...') results, _, _ = val.run( data_dict, batch_size=batch_size // WORLD_SIZE * 2, imgsz=imgsz, model=attempt_load(f, device).half(), iou_thres=0.65 if is_coco else 0.60, # best pycocotools results at 0.65 single_cls=single_cls, dataloader=val_loader, save_dir=save_dir, save_json=is_coco, verbose=True, plots=True, callbacks=callbacks, compute_loss=compute_loss) # val best model with plots if is_coco: callbacks.run('on_fit_epoch_end', list(mloss) + list(results) + lr, epoch, best_fitness, fi) callbacks.run('on_train_end', last, best, plots, epoch, results) LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}") torch.cuda.empty_cache() return results
def __init__(self, weights='yolov5s.pt', device=None, dnn=True): # Usage: # PyTorch: weights = *.pt # TorchScript: *.torchscript.pt # CoreML: *.mlmodel # TensorFlow: *_saved_model # TensorFlow: *.pb # TensorFlow Lite: *.tflite # ONNX Runtime: *.onnx # OpenCV DNN: *.onnx with dnn=True # TensorRT: *.engine super().__init__() w = str(weights[0] if isinstance(weights, list) else weights) suffix, suffixes = Path(w).suffix.lower(), [ '.pt', '.onnx', '.engine', '.tflite', '.pb', '', '.mlmodel' ] check_suffix(w, suffixes) # check weights have acceptable suffix pt, onnx, engine, tflite, pb, saved_model, coreml = ( suffix == x for x in suffixes) # backend booleans jit = pt and 'torchscript' in w.lower() stride, names = 64, [f'class{i}' for i in range(1000)] # assign defaults if jit: # TorchScript LOGGER.info(f'Loading {w} for TorchScript inference...') extra_files = {'config.txt': ''} # model metadata model = torch.jit.load(w, _extra_files=extra_files) if extra_files['config.txt']: d = json.loads(extra_files['config.txt']) # extra_files dict stride, names = int(d['stride']), d['names'] elif pt: # PyTorch from models.experimental import attempt_load # scoped to avoid circular import model = torch.jit.load(w) if 'torchscript' in w else attempt_load( weights, map_location=device) stride = int(model.stride.max()) # model stride names = model.module.names if hasattr( model, 'module') else model.names # get class names elif coreml: # CoreML *.mlmodel import coremltools as ct model = ct.models.MLModel(w) elif dnn: # ONNX OpenCV DNN LOGGER.info(f'Loading {w} for ONNX OpenCV DNN inference...') check_requirements(('opencv-python>=4.5.4', )) net = cv2.dnn.readNetFromONNX(w) elif onnx: # ONNX Runtime LOGGER.info(f'Loading {w} for ONNX Runtime inference...') check_requirements( ('onnx', 'onnxruntime-gpu' if torch.has_cuda else 'onnxruntime')) import onnxruntime session = onnxruntime.InferenceSession(w, None) elif engine: # TensorRT LOGGER.info(f'Loading {w} for TensorRT inference...') import tensorrt as trt # https://developer.nvidia.com/nvidia-tensorrt-download Binding = namedtuple('Binding', ('name', 'dtype', 'shape', 'data', 'ptr')) logger = trt.Logger(trt.Logger.INFO) with open(w, 'rb') as f, trt.Runtime(logger) as runtime: model = runtime.deserialize_cuda_engine(f.read()) bindings = OrderedDict() for index in range(model.num_bindings): name = model.get_binding_name(index) dtype = trt.nptype(model.get_binding_dtype(index)) shape = tuple(model.get_binding_shape(index)) data = torch.from_numpy(np.empty( shape, dtype=np.dtype(dtype))).to(device) bindings[name] = Binding(name, dtype, shape, data, int(data.data_ptr())) binding_addrs = OrderedDict( (n, d.ptr) for n, d in bindings.items()) context = model.create_execution_context() batch_size = bindings['images'].shape[0] else: # TensorFlow model (TFLite, pb, saved_model) if pb: # https://www.tensorflow.org/guide/migrate#a_graphpb_or_graphpbtxt LOGGER.info(f'Loading {w} for TensorFlow *.pb inference...') import tensorflow as tf def wrap_frozen_graph(gd, inputs, outputs): x = tf.compat.v1.wrap_function( lambda: tf.compat.v1.import_graph_def(gd, name=""), []) # wrapped return x.prune( tf.nest.map_structure(x.graph.as_graph_element, inputs), tf.nest.map_structure(x.graph.as_graph_element, outputs)) graph_def = tf.Graph().as_graph_def() graph_def.ParseFromString(open(w, 'rb').read()) frozen_func = wrap_frozen_graph(gd=graph_def, inputs="x:0", outputs="Identity:0") elif saved_model: LOGGER.info( f'Loading {w} for TensorFlow saved_model inference...') import tensorflow as tf model = tf.keras.models.load_model(w) elif tflite: # https://www.tensorflow.org/lite/guide/python#install_tensorflow_lite_for_python if 'edgetpu' in w.lower(): LOGGER.info( f'Loading {w} for TensorFlow Lite Edge TPU inference...' ) import tflite_runtime.interpreter as tfli delegate = { 'Linux': 'libedgetpu.so.1', # install https://coral.ai/software/#edgetpu-runtime 'Darwin': 'libedgetpu.1.dylib', 'Windows': 'edgetpu.dll' }[platform.system()] interpreter = tfli.Interpreter( model_path=w, experimental_delegates=[tfli.load_delegate(delegate)]) else: LOGGER.info( f'Loading {w} for TensorFlow Lite inference...') import tensorflow as tf interpreter = tf.lite.Interpreter( model_path=w) # load TFLite model interpreter.allocate_tensors() # allocate input_details = interpreter.get_input_details() # inputs output_details = interpreter.get_output_details() # outputs self.__dict__.update(locals()) # assign all variables to self
def run( data, weights=None, # model.pt path(s) batch_size=32, # batch size imgsz=640, # inference size (pixels) conf_thres=0.001, # confidence threshold iou_thres=0.6, # NMS IoU threshold task='val', # train, val, test, speed or study device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu single_cls=False, # treat as single-class dataset augment=False, # augmented inference verbose=False, # verbose output save_txt=False, # save results to *.txt save_hybrid=False, # save label+prediction hybrid results to *.txt save_conf=False, # save confidences in --save-txt labels save_json=False, # save a COCO-JSON results file classes=None, # filter by class: --class 0, or --class 0 2 3 project=ROOT / 'runs/val', # save to project/name name='exp', # save to project/name exist_ok=False, # existing project/name ok, do not increment half=True, # use FP16 half-precision inference model=None, dataloader=None, save_dir=Path(''), plots=True, callbacks=Callbacks(), compute_loss=None, ): # Initialize/load model and set device training = model is not None if training: # called by train.py device = next(model.parameters()).device # get model device else: # called directly device = select_device(device, batch_size=batch_size) # Directories save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run (save_dir / 'labels' if save_txt else save_dir).mkdir( parents=True, exist_ok=True) # make dir # Load model check_suffix(weights, '.pt') model = attempt_load(weights, map_location=device) # load FP32 model gs = max(int(model.stride.max()), 32) # grid size (max stride) imgsz = check_img_size(imgsz, s=gs) # check image size # Multi-GPU disabled, incompatible with .half() https://github.com/ultralytics/yolov5/issues/99 # if device.type != 'cpu' and torch.cuda.device_count() > 1: # model = nn.DataParallel(model) # Data data = check_dataset(data) # check # Half half &= device.type != 'cpu' # half precision only supported on CUDA model.half() if half else model.float() # Configure model.eval() is_coco = isinstance(data.get('val'), str) and data['val'].endswith( 'coco/val2017.txt') # COCO dataset nc = 1 if single_cls else int(data['nc']) # number of classes iouv = torch.linspace(0.5, 0.95, 10).to(device) # iou vector for [email protected]:0.95 niou = iouv.numel() # Dataloader if not training: if device.type != 'cpu': model( torch.zeros(1, 3, imgsz, imgsz).to(device).type_as( next(model.parameters()))) # run once task = task if task in ( 'train', 'val', 'test') else 'val' # path to train/val/test images dataloader = create_dataloader(data[task], imgsz, batch_size, gs, single_cls, pad=0.5, rect=True, prefix=colorstr(f'{task}: '))[0] seen = 0 confusion_matrix = ConfusionMatrix(nc=nc) names = { k: v for k, v in enumerate( model.names if hasattr(model, 'names') else model.module.names) } # # names = {(k - 1): v for k, v in names.items() if v != "head"} # class_map = coco80_to_coco91_class() if is_coco else list(range(1000)) s = ('%20s' + '%11s' * 6) % ('Class', 'Images', 'Labels', 'P', 'R', '[email protected]', '[email protected]:.95') dt, p, r, f1, mp, mr, map50, map = [0.0, 0.0, 0.0], 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 loss = torch.zeros(3, device=device) jdict, stats, ap, ap_class = [], [], [], [] for batch_i, (img, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)): t1 = time_sync() img = img.to(device, non_blocking=True) img = img.half() if half else img.float() # uint8 to fp16/32 img /= 255.0 # 0 - 255 to 0.0 - 1.0 targets = targets.to(device) nb, _, height, width = img.shape # batch size, channels, height, width t2 = time_sync() dt[0] += t2 - t1 # Run model out, train_out = model( img, augment=augment) # inference and training outputs dt[1] += time_sync() - t2 # Compute loss if compute_loss: loss += compute_loss([x.float() for x in train_out], targets)[1] # box, obj, cls # Run NMS targets[:, 2:] *= torch.Tensor([width, height, width, height]).to(device) # to pixels lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] # for autolabelling t3 = time_sync() out = non_max_suppression(out, conf_thres, iou_thres, labels=lb, multi_label=True, agnostic=single_cls) dt[2] += time_sync() - t3 # if out: # for i, pred in enumerate(out): # if len(pred) == 0: # continue # only_person_pred = pred[pred[:, 5] != 0] # only_person_pred[:, 5] = 0 # out[i] = only_person_pred # # Statistics per image for si, pred in enumerate(out): labels = targets[targets[:, 0] == si, 1:] nl = len(labels) tcls = labels[:, 0].tolist() if nl else [] # target class path, shape = Path(paths[si]), shapes[si][0] seen += 1 if len(pred) == 0: if nl: stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls)) continue # Predictions if single_cls: pred[:, 5] = 0 predn = pred.clone() scale_coords(img[si].shape[1:], predn[:, :4], shape, shapes[si][1]) # native-space pred # Evaluate if nl: tbox = xywh2xyxy(labels[:, 1:5]) # target boxes scale_coords(img[si].shape[1:], tbox, shape, shapes[si][1]) # native-space labels labelsn = torch.cat((labels[:, 0:1], tbox), 1) # native-space labels correct = process_batch(predn, labelsn, iouv) if plots: confusion_matrix.process_batch(predn, labelsn) else: correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool) stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls)) # (correct, conf, pcls, tcls) # Save/log if save_txt: save_one_txt(predn, save_conf, shape, file=save_dir / 'labels' / (path.stem + '.txt')) if save_json: save_one_json(predn, jdict, path, class_map) # append to COCO-JSON dictionary callbacks.run('on_val_image_end', pred, predn, path, names, img[si]) # Plot images if plots and batch_i < 3: f = save_dir / f'val_batch{batch_i}_labels.jpg' # labels Thread(target=plot_images, args=(img, targets, paths, f, names), daemon=True).start() f = save_dir / f'val_batch{batch_i}_pred.jpg' # predictions Thread(target=plot_images, args=(img, output_to_target(out), paths, f, names), daemon=True).start() # Compute statistics stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy if len(stats) and stats[0].any(): p, r, ap, f1, ap_class = ap_per_class(*stats, plot=plots, save_dir=save_dir, names=names) ap50, ap = ap[:, 0], ap.mean(1) # [email protected], [email protected]:0.95 mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean() nt = np.bincount(stats[3].astype(np.int64), minlength=nc) # number of targets per class else: nt = torch.zeros(1) # Print results pf = '%20s' + '%11i' * 2 + '%11.3g' * 4 # print format print(pf % ('all', seen, nt.sum(), mp, mr, map50, map)) # Print results per class if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats): for i, c in enumerate(ap_class): print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i])) # Print speeds t = tuple(x / seen * 1E3 for x in dt) # speeds per image if not training: shape = (batch_size, 3, imgsz, imgsz) print( f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {shape}' % t) # Plots if plots: confusion_matrix.plot(save_dir=save_dir, names=list(names.values())) callbacks.run('on_val_end') # Save JSON if save_json and len(jdict): w = Path(weights[0] if isinstance(weights, list) else weights ).stem if weights is not None else '' # weights anno_json = str( Path(data.get('path', '../coco')) / 'annotations/instances_val2017.json') # annotations json pred_json = str(save_dir / f"{w}_predictions.json") # predictions json print(f'\nEvaluating pycocotools mAP... saving {pred_json}...') with open(pred_json, 'w') as f: json.dump(jdict, f) try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb check_requirements(['pycocotools']) from pycocotools.coco import COCO from pycocotools.cocoeval import COCOeval anno = COCO(anno_json) # init annotations api pred = anno.loadRes(pred_json) # init predictions api eval = COCOeval(anno, pred, 'bbox') if is_coco: eval.params.imgIds = [ int(Path(x).stem) for x in dataloader.dataset.img_files ] # image IDs to evaluate eval.evaluate() eval.accumulate() eval.summarize() map, map50 = eval.stats[: 2] # update results ([email protected]:0.95, [email protected]) except Exception as e: print(f'pycocotools unable to run: {e}') # Return results model.float() # for training if not training: s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else '' print(f"Results saved to {colorstr('bold', save_dir)}{s}") maps = np.zeros(nc) + map for i, c in enumerate(ap_class): maps[c] = ap[i] return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t
def run( weights=ROOT / 'yolov5s.pt', # model.pt path(s) 训练的权重 source=ROOT / 'data/images', # file/dir/URL/glob, 0 for webcam 测试数据,图片/视频路径,'0'摄像头,rtsp视频流 imgsz=640, # inference size (pixels) 网络输入图片大小 conf_thres=0.25, # confidence threshold 置信度阈值 iou_thres=0.45, # NMS IOU threshold nms的iou阈值 max_det=1000, # maximum detections per image 分类数 device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu 设备 view_img=True, # show results 是否展示预测之后的图片/视频 save_txt=False, # save results to *.txt 是否将预测的框坐标保持txt格式,默认false # save_conf=False, # save confidences in --save-txt labels 置信度保存 save_crop=False, # save cropped prediction boxes nosave=False, # do not save images/videos 不保存 classes=None, # filter by class: --class 0, or --class 0 2 3 设置只保留某一部分类别 agnostic_nms=False, # class-agnostic NMS 进行nms是否也去除不同类别之间的框 augment=False, # augmented inference 图像增强 visualize=False, # visualize features 可视化 # update=False, # update all models 若ture,则对所有模型进行strip_optimizer操作,去除pt文件中的优化器等信息,默认false project=ROOT / 'runs/detect', # save results to project/name name='exp', # save results to project/name exist_ok=False, # existing project/name ok, do not increment line_thickness=3, # bounding box thickness (pixels) hide_labels=False, # hide labels hide_conf=False, # hide confidences half=False, # use FP16 half-precision inference ): source = str(source) save_img = not nosave and not source.endswith( '.txt') # save inference images webcam = source.isnumeric() or source.endswith( '.txt') or source.lower().startswith( ('rtsp://', 'rtmp://', 'http://', 'https://')) # Directories save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run (save_dir / 'labels' if save_txt else save_dir).mkdir( parents=True, exist_ok=True) # make dir # Initialize set_logging() device = select_device(device) half &= device.type != 'cpu' # half precision only supported on CUDA # Load model w = weights[0] if isinstance(weights, list) else weights classify, suffix, suffixes = False, Path(w).suffix.lower(), [ '.pt', '.onnx', '.tflite', '.pb', '' ] check_suffix(w, suffixes) # check weights have acceptable suffix pt, onnx, tflite, pb, saved_model = (suffix == x for x in suffixes) # backend booleans stride, names = 64, [f'class{i}' for i in range(1000)] # assign defaults if pt: model = attempt_load( weights, map_location=device) # load FP32 model 加载float32模型,确保图片分辨率能整除32 stride = int(model.stride.max()) # model stride names = model.module.names if hasattr( model, 'module') else model.names # get class names #设置Float16 if half: model.half() # to FP16 # 设置2次分类 if classify: # second-stage classifier modelc = load_classifier(name='resnet50', n=2) # initialize modelc.load_state_dict( torch.load('resnet50.pt', map_location=device)['model']).to(device).eval() # elif onnx: # check_requirements(('onnx', 'onnxruntime')) # import onnxruntime # session = onnxruntime.InferenceSession(w, None) else: # TensorFlow models check_requirements(('tensorflow>=2.4.1', )) import tensorflow as tf if pb: # https://www.tensorflow.org/guide/migrate#a_graphpb_or_graphpbtxt def wrap_frozen_graph(gd, inputs, outputs): x = tf.compat.v1.wrap_function( lambda: tf.compat.v1.import_graph_def(gd, name=""), []) # wrapped import return x.prune( tf.nest.map_structure(x.graph.as_graph_element, inputs), tf.nest.map_structure(x.graph.as_graph_element, outputs)) graph_def = tf.Graph().as_graph_def() graph_def.ParseFromString(open(w, 'rb').read()) frozen_func = wrap_frozen_graph(gd=graph_def, inputs="x:0", outputs="Identity:0") elif saved_model: model = tf.keras.models.load_model(w) elif tflite: interpreter = tf.lite.Interpreter( model_path=w) # load TFLite model interpreter.allocate_tensors() # allocate input_details = interpreter.get_input_details() # inputs output_details = interpreter.get_output_details() # outputs int8 = input_details[0][ 'dtype'] == np.uint8 # is TFLite quantized uint8 model imgsz = check_img_size(imgsz, s=stride) # check image size # Dataloader # 通过不同的输入源来设置不同的数据加载方式 # 摄像头 if webcam: view_img = check_imshow() cudnn.benchmark = True # set True to speed up constant image size inference dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt) bs = len(dataset) # batch_size # 图片或视频 else: dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt) bs = 1 # batch_size vid_path, vid_writer = [None] * bs, [None] * bs # Run inference if pt and device.type != 'cpu': # 进行一次前向推理,测试程序是否正常 model( torch.zeros(1, 3, *imgsz).to(device).type_as( next(model.parameters()))) # run once dt, seen = [0.0, 0.0, 0.0], 0 ''' path 图片/视频路径 img 进行resize+pad之后的图片,如(3,640,512) 格式(c,h,w) img0s 原size图片,如(1080,810,3) cap 当读取图片时为None,读取视频时为视频源 ''' for path, img, im0s, vid_cap in dataset: t1 = time_sync() if onnx: img = img.astype('float32') else: img = torch.from_numpy(img).to(device) # 图片也设置为Float16或者32 img = img.half() if half else img.float() # uint8 to fp16/32 img = img / 255.0 # 0 - 255 to 0.0 - 1.0 # 没有batch_size时,在最前面添加一个轴 if len(img.shape) == 3: img = img[None] # expand for batch dim t2 = time_sync() dt[0] += t2 - t1 # Inference if pt: visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False ''' 前向传播,返回pred的shape是(1,num_boxes,5+num_class) h,w为传入网络图片的高和宽,注意dataset在检测时使用了矩形推理,所以h不一定等于w num_boxes = (h/32*w/32+h/16*w/16+h/8*w/8)*3 例如:图片大小720,1280 -> 15120个boxes = (20*12 + 40*24 + 80*48 = 5040)*3 pred[...,0:4]为预测框坐标;预测框坐标为xywh pred[...,4]为objectness置信度 pred[...,5:-1]为分类结果 ''' pred = model(img, augment=augment, visualize=visualize)[0] # elif onnx: # pred = torch.tensor(session.run([session.get_outputs()[0].name], {session.get_inputs()[0].name: img})) else: # tensorflow model (tflite, pb, saved_model) imn = img.permute(0, 2, 3, 1).cpu().numpy() # image in numpy if pb: pred = frozen_func(x=tf.constant(imn)).numpy() elif saved_model: pred = model(imn, training=False).numpy() elif tflite: if int8: scale, zero_point = input_details[0]['quantization'] imn = (imn / scale + zero_point).astype( np.uint8) # de-scale interpreter.set_tensor(input_details[0]['index'], imn) interpreter.invoke() pred = interpreter.get_tensor(output_details[0]['index']) if int8: scale, zero_point = output_details[0]['quantization'] pred = (pred.astype(np.float32) - zero_point) * scale # re-scale pred[..., 0] *= imgsz[1] # x pred[..., 1] *= imgsz[0] # y pred[..., 2] *= imgsz[1] # w pred[..., 3] *= imgsz[0] # h pred = torch.tensor(pred) t3 = time_sync() dt[1] += t3 - t2 # NMS ''' pred:前向传播的输出 conf_thres:置信度阈值 iou_thres:iou阈值 classes:是否只保留特定的类别 agnostic_nmsL进行nms是否也去除不同类别之间的框 经过nms后预测框格式,xywh->xyxy(左上角右上角) pred是一个列表list[torch.tensor],长度为nms后目标框个数 每一个torch.tensor的shape为(num_boxes,6),内容为box(4个值)+cunf+cls ''' pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det) dt[2] += time_sync() - t3 # Second-stage classifier (optional) # 添加二级分类,默认false if classify: pred = apply_classifier(pred, modelc, img, im0s) # Process predictions # 对每一张图片处理 for i, det in enumerate(pred): # per image seen += 1 # 如果输入源是webcam,则batch_size不为1,取出dataset中的一张图片 if webcam: # batch_size >= 1 p, s, im0, frame = path[i], f'{i}: ', im0s[i].copy( ), dataset.count else: p, s, im0, frame = path, '', im0s.copy(), getattr( dataset, 'frame', 0) p = Path(p) # to Path # 设置保存图片或视频的路径 # p是原图片路径 save_path = str(save_dir / p.name) # img.jpg #设置保存框坐标txt文件的路径 txt_path = str(save_dir / 'labels' / p.stem) + ( '' if dataset.mode == 'image' else f'_{frame}') # img.txt # 设置打印信息(图片宽高),s如'640*512' s += '%gx%g ' % img.shape[2:] # print string gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh imc = im0.copy() if save_crop else im0 # for save_crop annotator = Annotator(im0, line_width=line_thickness, example=str(names)) if len(det): # Rescale boxes from img_size to im0 size # 调整预测框坐标,基于resize+pad的图片坐标->基于原size图片坐标 # 此时坐标格式为xyxy det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round() # Print results # 打印检测到的类别数量 for c in det[:, -1].unique(): n = (det[:, -1] == c).sum() # detections per class s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string # Write results # 保存预测结果 for *xyxy, conf, cls in reversed(det): # if save_txt: # Write to file # # 将xyxy格式转为xywh格式,并除上我w,h作归一化,转化为列表再保存 # xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh # line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format # with open(txt_path + '.txt', 'a') as f: # f.write(('%g ' * len(line)).rstrip() % line + '\n') if save_img or save_crop or view_img: # Add bbox to image c = int(cls) # integer class label = None if hide_labels else ( names[c] if hide_conf else f'{names[c]} {conf:.2f}') annotator.box_label(xyxy, label, color=colors(c, True)) if save_crop: save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True) # Print time (inference-only) # print(f'{pred[0][0][0].tolist()} {pred[0][0][1].tolist()} {s}Done. ({t3 - t2:.3f}s)') # Stream results im0 = annotator.result() # xxx = (pred[0][0][0].tolist()+pred[0][0][2].tolist())/2 # yyy = (pred[0][0][1].tolist()+pred[0][0][3].tolist())/2 if view_img: # + / 2 + cv2.imshow(str(p), im0) cv2.moveWindow(str(p), 0, 0) # pyautogui.moveTo(xxx, yyy) cv2.waitKey(1000) # 1 millisecond # Save results (image with detections) # if save_img: # if dataset.mode == 'image': # cv2.imwrite(save_path, im0) # else: # 'video' or 'stream' # if vid_path[i] != save_path: # new video # vid_path[i] = save_path # if isinstance(vid_writer[i], cv2.VideoWriter): # vid_writer[i].release() # release previous video writer # if vid_cap: # video # fps = vid_cap.get(cv2.CAP_PROP_FPS) # w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH)) # h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) # else: # stream # fps, w, h = 30, im0.shape[1], im0.shape[0] # save_path += '.mp4' # vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h)) # vid_writer[i].write(im0) # Print results t = tuple(x / seen * 1E3 for x in dt) # speeds per image print( f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t)
def __init__(self, weights='yolov3.pt', device=None, dnn=True): # Usage: # PyTorch: weights = *.pt # TorchScript: *.torchscript.pt # CoreML: *.mlmodel # TensorFlow: *_saved_model # TensorFlow: *.pb # TensorFlow Lite: *.tflite # ONNX Runtime: *.onnx # OpenCV DNN: *.onnx with dnn=True super().__init__() w = str(weights[0] if isinstance(weights, list) else weights) suffix, suffixes = Path(w).suffix.lower(), ['.pt', '.onnx', '.tflite', '.pb', '', '.mlmodel'] check_suffix(w, suffixes) # check weights have acceptable suffix pt, onnx, tflite, pb, saved_model, coreml = (suffix == x for x in suffixes) # backend booleans jit = pt and 'torchscript' in w.lower() stride, names = 64, [f'class{i}' for i in range(1000)] # assign defaults if jit: # TorchScript LOGGER.info(f'Loading {w} for TorchScript inference...') extra_files = {'config.txt': ''} # model metadata model = torch.jit.load(w, _extra_files=extra_files) if extra_files['config.txt']: d = json.loads(extra_files['config.txt']) # extra_files dict stride, names = int(d['stride']), d['names'] elif pt: # PyTorch from models.experimental import attempt_load # scoped to avoid circular import model = torch.jit.load(w) if 'torchscript' in w else attempt_load(weights, map_location=device) stride = int(model.stride.max()) # model stride names = model.module.names if hasattr(model, 'module') else model.names # get class names elif coreml: # CoreML *.mlmodel import coremltools as ct model = ct.models.MLModel(w) elif dnn: # ONNX OpenCV DNN LOGGER.info(f'Loading {w} for ONNX OpenCV DNN inference...') check_requirements(('opencv-python>=4.5.4',)) net = cv2.dnn.readNetFromONNX(w) elif onnx: # ONNX Runtime LOGGER.info(f'Loading {w} for ONNX Runtime inference...') check_requirements(('onnx', 'onnxruntime-gpu' if torch.has_cuda else 'onnxruntime')) import onnxruntime session = onnxruntime.InferenceSession(w, None) else: # TensorFlow model (TFLite, pb, saved_model) import tensorflow as tf if pb: # https://www.tensorflow.org/guide/migrate#a_graphpb_or_graphpbtxt def wrap_frozen_graph(gd, inputs, outputs): x = tf.compat.v1.wrap_function(lambda: tf.compat.v1.import_graph_def(gd, name=""), []) # wrapped return x.prune(tf.nest.map_structure(x.graph.as_graph_element, inputs), tf.nest.map_structure(x.graph.as_graph_element, outputs)) LOGGER.info(f'Loading {w} for TensorFlow *.pb inference...') graph_def = tf.Graph().as_graph_def() graph_def.ParseFromString(open(w, 'rb').read()) frozen_func = wrap_frozen_graph(gd=graph_def, inputs="x:0", outputs="Identity:0") elif saved_model: LOGGER.info(f'Loading {w} for TensorFlow saved_model inference...') model = tf.keras.models.load_model(w) elif tflite: # https://www.tensorflow.org/lite/guide/python#install_tensorflow_lite_for_python if 'edgetpu' in w.lower(): LOGGER.info(f'Loading {w} for TensorFlow Edge TPU inference...') import tflite_runtime.interpreter as tfli delegate = {'Linux': 'libedgetpu.so.1', # install https://coral.ai/software/#edgetpu-runtime 'Darwin': 'libedgetpu.1.dylib', 'Windows': 'edgetpu.dll'}[platform.system()] interpreter = tfli.Interpreter(model_path=w, experimental_delegates=[tfli.load_delegate(delegate)]) else: LOGGER.info(f'Loading {w} for TensorFlow Lite inference...') interpreter = tf.lite.Interpreter(model_path=w) # load TFLite model interpreter.allocate_tensors() # allocate input_details = interpreter.get_input_details() # inputs output_details = interpreter.get_output_details() # outputs self.__dict__.update(locals()) # assign all variables to self
def run( weights=ROOT / 'yolov5s.pt', # model.pt path(s) 训练的权重 imgsz=[640, 640], # inference size (pixels) 网络输入图片大小 conf_thres=0.25, # confidence threshold 置信度阈值 iou_thres=0.45, # NMS IOU threshold nms的iou阈值 max_det=1000, # maximum detections per image 分类数 device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu 设备 view_img=True, # show results 是否展示预测之后的图片/视频 classes=None, # filter by class: --class 0, or --class 0 2 3 设置只保留某一部分类别 agnostic_nms=False, # class-agnostic NMS 进行nms是否也去除不同类别之间的框 augment=False, # augmented inference 图像增强 visualize=False, # visualize features 可视化 line_thickness=3, # bounding box thickness (pixels) hide_labels=False, # hide labels hide_conf=False, # hide confidences half=False, # use FP16 half-precision inference ): # Initialize set_logging() device = select_device(device) half &= device.type != 'cpu' # half precision only supported on CUDA # Load model w = weights[0] if isinstance(weights, list) else weights classify, suffix, suffixes = False, Path(w).suffix.lower(), [ '.pt', '.onnx', '.tflite', '.pb', '' ] check_suffix(w, suffixes) # check weights have acceptable suffix pt, onnx, tflite, pb, saved_model = (suffix == x for x in suffixes) # backend booleans stride, names = 64, [f'class{i}' for i in range(1000)] # assign defaults if pt: model = attempt_load( weights, map_location=device) # load FP32 model 加载float32模型,确保图片分辨率能整除32 stride = int(model.stride.max()) # model stride names = model.module.names if hasattr( model, 'module') else model.names # get class names #设置Float16 if half: model.half() # to FP16 # 设置2次分类 if classify: # second-stage classifier modelc = load_classifier(name='resnet50', n=2) # initialize modelc.load_state_dict( torch.load('resnet50.pt', map_location=device)['model']).to(device).eval() else: # TensorFlow models check_requirements(('tensorflow>=2.4.1', )) import tensorflow as tf if pb: # https://www.tensorflow.org/guide/migrate#a_graphpb_or_graphpbtxt def wrap_frozen_graph(gd, inputs, outputs): x = tf.compat.v1.wrap_function( lambda: tf.compat.v1.import_graph_def(gd, name=""), []) # wrapped import return x.prune( tf.nest.map_structure(x.graph.as_graph_element, inputs), tf.nest.map_structure(x.graph.as_graph_element, outputs)) graph_def = tf.Graph().as_graph_def() graph_def.ParseFromString(open(w, 'rb').read()) frozen_func = wrap_frozen_graph(gd=graph_def, inputs="x:0", outputs="Identity:0") elif saved_model: model = tf.keras.models.load_model(w) elif tflite: interpreter = tf.lite.Interpreter( model_path=w) # load TFLite model interpreter.allocate_tensors() # allocate input_details = interpreter.get_input_details() # inputs output_details = interpreter.get_output_details() # outputs int8 = input_details[0][ 'dtype'] == np.uint8 # is TFLite quantized uint8 model imgsz = check_img_size(imgsz, s=stride) # check image size # Dataloader # 图片或视频 tmp = False tmp2 = False mon = {'top': 0, 'left': 0, 'width': 960, 'height': 960} while True: im = np.array(mss().grab(mon)) screen = cv2.cvtColor(im, cv2.COLOR_BGRA2BGR) dataset = LoadImages(screen, img_size=imgsz, stride=stride, auto=pt) dt, seen = [0.0, 0.0, 0.0], 0 ''' path 图片/视频路径 img 进行resize+pad之后的图片,如(3,640,512) 格式(c,h,w) img0s 原size图片,如(1080,810,3) cap 当读取图片时为None,读取视频时为视频源 ''' for img, im0s, vid_cap in dataset: t1 = time_sync() if onnx: img = img.astype('float32') else: img = torch.from_numpy(img).to(device) # print(img) # 图片也设置为Float16或者32 img = img.half() if half else img.float() # uint8 to fp16/32 img = img / 255.0 # 0 - 255 to 0.0 - 1.0 # 没有batch_size时,在最前面添加一个轴 if len(img.shape) == 3: img = img[None] # expand for batch dim t2 = time_sync() dt[0] += t2 - t1 # Inference if pt: ''' 前向传播,返回pred的shape是(1,num_boxes,5+num_class) h,w为传入网络图片的高和宽,注意dataset在检测时使用了矩形推理,所以h不一定等于w num_boxes = (h/32*w/32+h/16*w/16+h/8*w/8)*3 例如:图片大小720,1280 -> 15120个boxes = (20*12 + 40*24 + 80*48 = 5040)*3 pred[...,0:4]为预测框坐标;预测框坐标为xywh pred[...,4]为objectness置信度 pred[...,5:-1]为分类结果 ''' pred = model(img, augment=augment, visualize=visualize)[0] else: # tensorflow model (tflite, pb, saved_model) imn = img.permute(0, 2, 3, 1).cpu().numpy() # image in numpy if pb: pred = frozen_func(x=tf.constant(imn)).numpy() elif saved_model: pred = model(imn, training=False).numpy() elif tflite: if int8: scale, zero_point = input_details[0]['quantization'] imn = (imn / scale + zero_point).astype( np.uint8) # de-scale interpreter.set_tensor(input_details[0]['index'], imn) interpreter.invoke() pred = interpreter.get_tensor(output_details[0]['index']) if int8: scale, zero_point = output_details[0]['quantization'] pred = (pred.astype(np.float32) - zero_point) * scale # re-scale pred[..., 0] *= imgsz[1] # x pred[..., 1] *= imgsz[0] # y pred[..., 2] *= imgsz[1] # w pred[..., 3] *= imgsz[0] # h pred = torch.tensor(pred) t3 = time_sync() dt[1] += t3 - t2 # NMS ''' pred:前向传播的输出 conf_thres:置信度阈值 iou_thres:iou阈值 classes:是否只保留特定的类别 agnostic_nmsL进行nms是否也去除不同类别之间的框 经过nms后预测框格式,xywh->xyxy(左上角右上角) pred是一个列表list[torch.tensor],长度为nms后目标框个数 每一个torch.tensor的shape为(num_boxes,6),内容为box(4个值)+cunf+cls ''' pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det) dt[2] += time_sync() - t3 # Second-stage classifier (optional) # 添加二级分类,默认false # if classify: # pred = apply_classifier(pred, modelc, img, im0s) # Process predictions # 对每一张图片处理 for i, det in enumerate(pred): # per image seen += 1 s, im0 = '', im0s.copy() # 设置打印信息(图片宽高),s如'640*512' s += '%gx%g ' % img.shape[2:] # print string annotator = Annotator(im0, line_width=line_thickness, example=str(names)) if len(det): # Rescale boxes from img_size to im0 size # 调整预测框坐标,基于resize+pad的图片坐标->基于原size图片坐标 # 此时坐标格式为xyxy det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round() # Print results # 打印检测到的类别数量 for c in det[:, -1].unique(): n = (det[:, -1] == c).sum() # detections per class s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string # Write results # 保存预测结果 for *xyxy, conf, cls in reversed(det): if view_img: # Add bbox to image c = int(cls) # integer class label = None if hide_labels else ( names[c] if hide_conf else f'{names[c]} {conf:.2f}') annotator.box_label(xyxy, label, color=colors(c, True)) # Stream results im0 = annotator.result() cv2.imshow('a crop of the screen', im0) cv2.moveWindow('a crop of the screen', 960, 0) if cv2.waitKey(1) & 0xff == ord('q'): tmp = True break if tmp: tmp2 = True break if tmp2: break