def end_epoch(self, best_result=False):
        """
        commit the log_dict, model artifacts and Tables to W&B and flush the log_dict.

        arguments:
        best_result (boolean): Boolean representing if the result of this evaluation is best or not
        """
        if self.wandb_run:
            with all_logging_disabled():
                if self.bbox_media_panel_images:
                    self.log_dict["BoundingBoxDebugger"] = self.bbox_media_panel_images
                try:
                    wandb.log(self.log_dict)
                except BaseException as e:
                    LOGGER.info(
                        f"An error occurred in wandb logger. The training will proceed without interruption. More info\n{e}"
                    )
                    self.wandb_run.finish()
                    self.wandb_run = None

                self.log_dict = {}
                self.bbox_media_panel_images = []
            if self.result_artifact:
                self.result_artifact.add(self.result_table, 'result')
                wandb.log_artifact(self.result_artifact,
                                   aliases=[
                                       'latest', 'last', 'epoch ' + str(self.current_epoch),
                                       ('best' if best_result else '')])

                wandb.log({"evaluation": self.result_table})
                columns = ["epoch", "id", "ground truth", "prediction"]
                columns.extend(self.data_dict['names'])
                self.result_table = wandb.Table(columns)
                self.result_artifact = wandb.Artifact("run_" + wandb.run.id + "_progress", "evaluation")
Exemple #2
0
    def log_model(self, path, opt, epoch, fitness_score, best_model=False):
        """
        Log the model checkpoint as W&B artifact

        arguments:
        path (Path)   -- Path of directory containing the checkpoints
        opt (namespace) -- Command line arguments for this run
        epoch (int)  -- Current epoch number
        fitness_score (float) -- fitness score for current epoch
        best_model (boolean) -- Boolean representing if the current checkpoint is the best yet.
        """
        model_artifact = wandb.Artifact('run_' + wandb.run.id + '_model',
                                        type='model',
                                        metadata={
                                            'original_url': str(path),
                                            'epochs_trained': epoch + 1,
                                            'save period': opt.save_period,
                                            'project': opt.project,
                                            'total_epochs': opt.epochs,
                                            'fitness_score': fitness_score
                                        })
        model_artifact.add_file(str(path / 'last.pt'), name='last.pt')
        wandb.log_artifact(model_artifact,
                           aliases=[
                               'latest', 'last',
                               'epoch ' + str(self.current_epoch),
                               'best' if best_model else ''
                           ])
        LOGGER.info(f"Saving model artifact on epoch {epoch + 1}")
Exemple #3
0
    def __init__(self):
        self.transform = None
        try:
            import albumentations as A
            check_version(A.__version__, '1.0.3',
                          hard=True)  # version requirement

            self.transform = A.Compose([
                A.Blur(p=0.01),
                A.MedianBlur(p=0.01),
                A.ToGray(p=0.01),
                A.CLAHE(p=0.01),
                A.RandomBrightnessContrast(p=0.0),
                A.RandomGamma(p=0.0),
                A.ImageCompression(quality_lower=75, p=0.0)
            ],
                                       bbox_params=A.BboxParams(
                                           format='yolo',
                                           label_fields=['class_labels']))

            LOGGER.info(
                colorstr('albumentations: ') +
                ', '.join(f'{x}' for x in self.transform.transforms if x.p))
        except ImportError:  # package not installed, skip
            pass
        except Exception as e:
            LOGGER.info(colorstr('albumentations: ') + f'{e}')
Exemple #4
0
def model_info(model, verbose=False, img_size=640):
    # Model information. img_size may be int or list, i.e. img_size=640 or img_size=[640, 320]
    n_p = sum(x.numel() for x in model.parameters())  # number parameters
    n_g = sum(x.numel() for x in model.parameters()
              if x.requires_grad)  # number gradients
    if verbose:
        print(
            f"{'layer':>5} {'name':>40} {'gradient':>9} {'parameters':>12} {'shape':>20} {'mu':>10} {'sigma':>10}"
        )
        for i, (name, p) in enumerate(model.named_parameters()):
            name = name.replace('module_list.', '')
            print('%5g %40s %9s %12g %20s %10.3g %10.3g' %
                  (i, name, p.requires_grad, p.numel(), list(
                      p.shape), p.mean(), p.std()))

    try:  # FLOPs
        from thop import profile
        stride = max(int(model.stride.max()), 32) if hasattr(model,
                                                             'stride') else 32
        img = torch.zeros((1, model.yaml.get('ch', 3), stride, stride),
                          device=next(model.parameters()).device)  # input
        flops = profile(deepcopy(model), inputs=(img, ),
                        verbose=False)[0] / 1E9 * 2  # stride GFLOPs
        img_size = img_size if isinstance(
            img_size, list) else [img_size, img_size]  # expand if int/float
        fs = ', %.1f GFLOPs' % (flops * img_size[0] / stride * img_size[1] /
                                stride)  # 640x640 GFLOPs
    except (ImportError, Exception):
        fs = ''

    LOGGER.info(
        f"Model Summary: {len(list(model.modules()))} layers, {n_p} parameters, {n_g} gradients{fs}"
    )
Exemple #5
0
 def _print_biases(self):
     m = self.model[-1]  # Detect() module
     for mi in m.m:  # from
         b = mi.bias.detach().view(m.na, -1).T  # conv.bias(255) to (3,85)
         LOGGER.info(
             ('%6g Conv2d.bias:' + '%10.3g' * 6) %
             (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean()))
Exemple #6
0
def select_device(device='', batch_size=0, newline=True):
    # device = 'cpu' or '0' or '0,1,2,3'
    s = f'YOLOv5 🚀 {git_describe() or file_update_date()} torch {torch.__version__} '  # string
    device = str(device).strip().lower().replace(
        'cuda:', '')  # to string, 'cuda:0' to '0'
    cpu = device == 'cpu'
    if cpu:
        os.environ[
            'CUDA_VISIBLE_DEVICES'] = '-1'  # force torch.cuda.is_available() = False
    elif device:  # non-cpu device requested
        os.environ[
            'CUDA_VISIBLE_DEVICES'] = device  # set environment variable - must be before assert is_available()
        assert torch.cuda.is_available() and torch.cuda.device_count() >= len(device.replace(',', '')), \
            f"Invalid CUDA '--device {device}' requested, use '--device cpu' or pass valid CUDA device(s)"

    cuda = not cpu and torch.cuda.is_available()
    if cuda:
        devices = device.split(
            ','
        ) if device else '0'  # range(torch.cuda.device_count())  # i.e. 0,1,6,7
        n = len(devices)  # device count
        if n > 1 and batch_size > 0:  # check batch_size is divisible by device_count
            assert batch_size % n == 0, f'batch-size {batch_size} not multiple of GPU count {n}'
        space = ' ' * (len(s) + 1)
        for i, d in enumerate(devices):
            p = torch.cuda.get_device_properties(i)
            s += f"{'' if i == 0 else space}CUDA:{d} ({p.name}, {p.total_memory / (1 << 20):.0f}MiB)\n"  # bytes to MB
    else:
        s += 'CPU\n'

    if not newline:
        s = s.rstrip()
    LOGGER.info(s.encode().decode('ascii', 'ignore')
                if platform.system() == 'Windows' else s)  # emoji-safe
    return torch.device('cuda:0' if cuda else 'cpu')
Exemple #7
0
def run(
        weights=ROOT / 'yolov5s.pt',  # weights path
        imgsz=(640, 640),  # inference size h,w
        batch_size=1,  # batch size
        dynamic=False,  # dynamic batch size
):
    # PyTorch model
    im = torch.zeros((batch_size, 3, *imgsz))  # BCHW image
    model = attempt_load(weights,
                         map_location=torch.device('cpu'),
                         inplace=True,
                         fuse=False)
    _ = model(im)  # inference
    model.info()

    # TensorFlow model
    im = tf.zeros((batch_size, *imgsz, 3))  # BHWC image
    tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz)
    _ = tf_model.predict(im)  # inference

    # Keras model
    im = keras.Input(shape=(*imgsz, 3),
                     batch_size=None if dynamic else batch_size)
    keras_model = keras.Model(inputs=im, outputs=tf_model.predict(im))
    keras_model.summary()

    LOGGER.info(
        'PyTorch, TensorFlow and Keras models successfully verified.\nUse export.py for TF model export.'
    )
Exemple #8
0
    def cache_labels(self, path=Path('./labels.cache'), prefix=''):
        # Cache dataset labels, check images and read shapes
        x = {}  # dict
        nm, nf, ne, nc, msgs = 0, 0, 0, 0, []  # number missing, found, empty, corrupt, messages
        desc = f"{prefix}Scanning '{path.parent / path.stem}' images and labels..."
        with Pool(NUM_THREADS) as pool:
            pbar = tqdm(pool.imap(verify_image_label, zip(self.img_files, self.label_files, repeat(prefix))),
                        desc=desc, total=len(self.img_files))
            for im_file, l, shape, segments, nm_f, nf_f, ne_f, nc_f, msg in pbar:
                nm += nm_f
                nf += nf_f
                ne += ne_f
                nc += nc_f
                if im_file:
                    x[im_file] = [l, shape, segments]
                if msg:
                    msgs.append(msg)
                pbar.desc = f"{desc}{nf} found, {nm} missing, {ne} empty, {nc} corrupt"

        pbar.close()
        if msgs:
            LOGGER.info('\n'.join(msgs))
        if nf == 0:
            LOGGER.warning(f'{prefix}WARNING: No labels found in {path}. See {HELP_URL}')
        x['hash'] = get_hash(self.label_files + self.img_files)
        x['results'] = nf, nm, ne, nc, len(self.img_files)
        x['msgs'] = msgs  # warnings
        x['version'] = self.cache_version  # cache version
        try:
            np.save(path, x)  # save cache for next time
            path.with_suffix('.cache.npy').rename(path)  # remove .npy suffix
            LOGGER.info(f'{prefix}New cache created: {path}')
        except Exception as e:
            LOGGER.warning(f'{prefix}WARNING: Cache directory {path.parent} is not writeable: {e}')  # not writeable
        return x
Exemple #9
0
 def __init__(self, model):
     super().__init__()
     LOGGER.info('Adding AutoShape... ')
     copy_attr(self, model, include=('yaml', 'nc', 'hyp', 'names', 'stride', 'abc'), exclude=())  # copy attributes
     self.dmb = isinstance(model, DetectMultiBackend)  # DetectMultiBackend() instance
     self.pt = not self.dmb or model.pt  # PyTorch model
     self.model = model.eval()
Exemple #10
0
def main(opt):
    check_requirements(requirements=ROOT / 'requirements.txt',
                       exclude=('tensorboard', 'thop'))

    if opt.task in ('train', 'val', 'test'):  # run normally
        if opt.conf_thres > 0.001:  # https://github.com/ultralytics/yolov5/issues/1466
            LOGGER.info(
                f'WARNING: confidence threshold {opt.conf_thres} >> 0.001 will produce invalid mAP values.'
            )
        run(**vars(opt))

    else:
        weights = opt.weights if isinstance(opt.weights,
                                            list) else [opt.weights]
        opt.half = True  # FP16 for fastest results
        if opt.task == 'speed':  # speed benchmarks
            # python val.py --task speed --data coco.yaml --batch 1 --weights yolov5n.pt yolov5s.pt...
            opt.conf_thres, opt.iou_thres, opt.save_json = 0.25, 0.45, False
            for opt.weights in weights:
                run(**vars(opt), plots=False)

        elif opt.task == 'study':  # speed vs mAP benchmarks
            # python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n.pt yolov5s.pt...
            for opt.weights in weights:
                f = f'study_{Path(opt.data).stem}_{Path(opt.weights).stem}.txt'  # filename to save to
                x, y = list(range(256, 1536 + 128,
                                  128)), []  # x axis (image sizes), y axis
                for opt.imgsz in x:  # img-size
                    LOGGER.info(f'\nRunning {f} --imgsz {opt.imgsz}...')
                    r, _, t = run(**vars(opt), plots=False)
                    y.append(r + t)  # results and times
                np.savetxt(f, y, fmt='%10.4g')  # save
            os.system('zip -r study.zip study_*.txt')
            plot_val_study(x=x)  # plot
Exemple #11
0
def check_anchors(dataset, model, thr=4.0, imgsz=640):
    # Check anchor fit to data, recompute if necessary
    m = model.module.model[-1] if hasattr(model, 'module') else model.model[-1]  # Detect()
    shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True)
    scale = np.random.uniform(0.9, 1.1, size=(shapes.shape[0], 1))  # augment scale
    wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes * scale, dataset.labels)])).float()  # wh

    def metric(k):  # compute metric
        r = wh[:, None] / k[None]
        x = torch.min(r, 1 / r).min(2)[0]  # ratio metric
        best = x.max(1)[0]  # best_x
        aat = (x > 1 / thr).float().sum(1).mean()  # anchors above threshold
        bpr = (best > 1 / thr).float().mean()  # best possible recall
        return bpr, aat

    anchors = m.anchors.clone() * m.stride.to(m.anchors.device).view(-1, 1, 1)  # current anchors
    bpr, aat = metric(anchors.cpu().view(-1, 2))
    s = f'\n{PREFIX}{aat:.2f} anchors/target, {bpr:.3f} Best Possible Recall (BPR). '
    if bpr > 0.98:  # threshold to recompute
        LOGGER.info(emojis(f'{s}Current anchors are a good fit to dataset тЬЕ'))
    else:
        LOGGER.info(emojis(f'{s}Anchors are a poor fit to dataset тЪая╕П, attempting to improve...'))
        na = m.anchors.numel() // 2  # number of anchors
        try:
            anchors = kmean_anchors(dataset, n=na, img_size=imgsz, thr=thr, gen=1000, verbose=False)
        except Exception as e:
            LOGGER.info(f'{PREFIX}ERROR: {e}')
        new_bpr = metric(anchors)[0]
        if new_bpr > bpr:  # replace anchors
            anchors = torch.tensor(anchors, device=m.anchors.device).type_as(m.anchors)
            m.anchors[:] = anchors.clone().view_as(m.anchors) / m.stride.to(m.anchors.device).view(-1, 1, 1)  # loss
            check_anchor_order(m)
            LOGGER.info(f'{PREFIX}New anchors saved to model. Update model *.yaml to use these anchors in the future.')
        else:
            LOGGER.info(f'{PREFIX}Original anchors better than new anchors. Proceeding with original anchors.')
Exemple #12
0
def plot_results(file='path/to/results.csv', dir=''):
    # Plot training results.csv. Usage: from utils.plots import *; plot_results('path/to/results.csv')
    save_dir = Path(file).parent if file else Path(dir)
    fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True)
    ax = ax.ravel()
    files = list(save_dir.glob('results*.csv'))
    assert len(
        files
    ), f'No results.csv files found in {save_dir.resolve()}, nothing to plot.'
    for f in files:
        try:
            data = pd.read_csv(f)
            s = [x.strip() for x in data.columns]
            x = data.values[:, 0]
            for i, j in enumerate([1, 2, 3, 4, 5, 8, 9, 10, 6, 7]):
                y = data.values[:, j].astype('float')
                # y[y == 0] = np.nan  # don't show zero values
                ax[i].plot(x,
                           y,
                           marker='.',
                           label=f.stem,
                           linewidth=2,
                           markersize=8)
                ax[i].set_title(s[j], fontsize=12)
                # if j in [8, 9, 10]:  # share train and val loss y axes
                #     ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
        except Exception as e:
            LOGGER.info(f'Warning: Plotting error for {f}: {e}')
    ax[1].legend()
    fig.savefig(save_dir / 'results.png', dpi=200)
    plt.close()
Exemple #13
0
def feature_visualization(x,
                          module_type,
                          stage,
                          n=32,
                          save_dir=Path('runs/detect/exp')):
    """
    x:              Features to be visualized
    module_type:    Module type
    stage:          Module stage within model
    n:              Maximum number of feature maps to plot
    save_dir:       Directory to save results
    """
    if 'Detect' not in module_type:
        batch, channels, height, width = x.shape  # batch, channels, height, width
        if height > 1 and width > 1:
            f = save_dir / f"stage{stage}_{module_type.split('.')[-1]}_features.png"  # filename

            blocks = torch.chunk(
                x[0].cpu(), channels,
                dim=0)  # select batch index 0, block by channels
            n = min(n, channels)  # number of plots
            fig, ax = plt.subplots(math.ceil(n / 8), 8,
                                   tight_layout=True)  # 8 rows x n/8 cols
            ax = ax.ravel()
            plt.subplots_adjust(wspace=0.05, hspace=0.05)
            for i in range(n):
                ax[i].imshow(blocks[i].squeeze())  # cmap='gray'
                ax[i].axis('off')

            LOGGER.info(f'Saving {f}... ({n}/{channels})')
            plt.savefig(f, dpi=300, bbox_inches='tight')
            plt.close()
            np.save(str(f.with_suffix('.npy')), x[0].cpu().numpy())  # npy save
Exemple #14
0
def check_anchor_order(m):
    # Check anchor order against stride order for YOLOv5 Detect() module m, and correct if necessary
    a = m.anchors.prod(-1).view(-1)  # anchor area
    da = a[-1] - a[0]  # delta a
    ds = m.stride[-1] - m.stride[0]  # delta s
    if da.sign() != ds.sign():  # same order
        LOGGER.info(f'{PREFIX}Reversing anchor order')
        m.anchors[:] = m.anchors.flip(0)
Exemple #15
0
 def autoshape(self):  # add AutoShape module
     LOGGER.info('Adding AutoShape... ')
     m = AutoShape(self)  # wrap model
     copy_attr(m,
               self,
               include=('yaml', 'nc', 'hyp', 'names', 'stride'),
               exclude=())  # copy attributes
     return m
Exemple #16
0
 def __init__(self, model):
     super().__init__()
     LOGGER.info('Adding AutoShape... ')
     copy_attr(self,
               model,
               include=('yaml', 'nc', 'hyp', 'names', 'stride', 'abc'),
               exclude=())  # copy attributes
     self.model = model.eval()
Exemple #17
0
def export_onnx(model, im, file, opset, train, dynamic, simplify, prefix=colorstr('ONNX:')):
    # YOLOv5 ONNX export
    try:
        check_requirements(('onnx',))
        import onnx

        LOGGER.info(f'\n{prefix} starting export with onnx {onnx.__version__}...')
        f = file.with_suffix('.onnx')

        torch.onnx.export(
            model,
            im,
            f,
            verbose=False,
            opset_version=opset,
            training=torch.onnx.TrainingMode.TRAINING if train else torch.onnx.TrainingMode.EVAL,
            do_constant_folding=not train,
            input_names=['images'],
            output_names=['output'],
            dynamic_axes={
                'images': {
                    0: 'batch',
                    2: 'height',
                    3: 'width'},  # shape(1,3,640,640)
                'output': {
                    0: 'batch',
                    1: 'anchors'}  # shape(1,25200,85)
            } if dynamic else None)

        # Checks
        model_onnx = onnx.load(f)  # load onnx model
        onnx.checker.check_model(model_onnx)  # check onnx model

        # Metadata
        d = {'stride': int(max(model.stride)), 'names': model.names}
        for k, v in d.items():
            meta = model_onnx.metadata_props.add()
            meta.key, meta.value = k, str(v)
        onnx.save(model_onnx, f)

        # Simplify
        if simplify:
            try:
                check_requirements(('onnx-simplifier',))
                import onnxsim

                LOGGER.info(f'{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...')
                model_onnx, check = onnxsim.simplify(model_onnx,
                                                     dynamic_input_shape=dynamic,
                                                     input_shapes={'images': list(im.shape)} if dynamic else None)
                assert check, 'assert check failed'
                onnx.save(model_onnx, f)
            except Exception as e:
                LOGGER.info(f'{prefix} simplifier failure: {e}')
        LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
        return f
    except Exception as e:
        LOGGER.info(f'{prefix} export failure: {e}')
Exemple #18
0
 def map_val_table_path(self):
     """
     Map the validation dataset Table like name of file -> it's id in the W&B Table.
     Useful for - referencing artifacts for evaluation.
     """
     self.val_table_path_map = {}
     LOGGER.info("Mapping dataset")
     for i, data in enumerate(tqdm(self.val_table.data)):
         self.val_table_path_map[data[3]] = data[0]
    def log_dataset_artifact(self, data_file, single_cls, project, overwrite_config=False):
        """
        Log the dataset as W&B artifact and return the new data file with W&B links

        arguments:
        data_file (str) -- the .yaml file with information about the dataset like - path, classes etc.
        single_class (boolean)  -- train multi-class data as single-class
        project (str) -- project name. Used to construct the artifact path
        overwrite_config (boolean) -- overwrites the data.yaml file if set to true otherwise creates a new
        file with _wandb postfix. Eg -> data_wandb.yaml

        returns:
        the new .yaml file with artifact links. it can be used to start training directly from artifacts
        """
        upload_dataset = self.wandb_run.config.upload_dataset
        log_val_only = isinstance(upload_dataset, str) and upload_dataset == 'val'
        self.data_dict = check_dataset(data_file)  # parse and check
        data = dict(self.data_dict)
        nc, names = (1, ['item']) if single_cls else (int(data['nc']), data['names'])
        names = {k: v for k, v in enumerate(names)}  # to index dictionary

        # log train set
        if not log_val_only:
            self.train_artifact = self.create_dataset_table(LoadImagesAndLabels(data['train'], rect=True, batch_size=1),
                                                            names,
                                                            name='train') if data.get('train') else None
            if data.get('train'):
                data['train'] = WANDB_ARTIFACT_PREFIX + str(Path(project) / 'train')

        self.val_artifact = self.create_dataset_table(
            LoadImagesAndLabels(data['val'], rect=True, batch_size=1), names, name='val') if data.get('val') else None
        if data.get('val'):
            data['val'] = WANDB_ARTIFACT_PREFIX + str(Path(project) / 'val')

        path = Path(data_file)
        # create a _wandb.yaml file with artifacts links if both train and test set are logged
        if not log_val_only:
            path = (path.stem if overwrite_config else path.stem + '_wandb') + '.yaml'  # updated data.yaml path
            path = ROOT / 'data' / path
            data.pop('download', None)
            data.pop('path', None)
            with open(path, 'w') as f:
                yaml.safe_dump(data, f)
                LOGGER.info(f"Created dataset config file {path}")

        if self.job_type == 'Training':  # builds correct artifact pipeline graph
            if not log_val_only:
                self.wandb_run.log_artifact(
                    self.train_artifact)  # calling use_artifact downloads the dataset. NOT NEEDED!
            self.wandb_run.use_artifact(self.val_artifact)
            self.val_artifact.wait()
            self.val_table = self.val_artifact.get('val')
            self.map_val_table_path()
        else:
            self.wandb_run.log_artifact(self.train_artifact)
            self.wandb_run.log_artifact(self.val_artifact)
        return path
Exemple #20
0
 def fuse(self):  # fuse model Conv2d() + BatchNorm2d() layers
     LOGGER.info('Fusing layers... ')
     for m in self.model.modules():
         if isinstance(m, (Conv, DWConv)) and hasattr(m, 'bn'):
             m.conv = fuse_conv_and_bn(m.conv, m.bn)  # update conv
             delattr(m, 'bn')  # remove batchnorm
             m.forward = m.forward_fuse  # update forward
     self.info()
     return self
Exemple #21
0
def parse_model(d, ch):  # model_dict, input_channels(3)
    LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10}  {'module':<40}{'arguments':<30}")
    anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']
    na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors  # number of anchors
    no = na * (nc + 5)  # number of outputs = anchors * (classes + 5)

    layers, save, c2 = [], [], ch[-1]  # layers, savelist, ch out
    for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']):  # from, number, module, args
        m = eval(m) if isinstance(m, str) else m  # eval strings
        for j, a in enumerate(args):
            try:
                args[j] = eval(a) if isinstance(a, str) else a  # eval strings
            except NameError:
                pass

        n = n_ = max(round(n * gd), 1) if n > 1 else n  # depth gain
        if m in [Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,
                 BottleneckCSP, C3, C3TR, C3DETRTR, C3SwinTR, C3SPP, C3Ghost]:
            c1, c2 = ch[f], args[0]
            if c2 != no:  # if not output
                c2 = make_divisible(c2 * gw, 8)

            args = [c1, c2, *args[1:]]
            if m in [BottleneckCSP, C3, C3TR, C3DETRTR, C3SwinTR, C3Ghost]:
                args.insert(2, n)  # number of repeats
                n = 1
        elif m is nn.BatchNorm2d:
            args = [ch[f]]
        elif m is Concat:
            c2 = sum(ch[x] for x in f)
        elif m is Detect:
            args.append([ch[x] for x in f])
            if isinstance(args[1], int):  # number of anchors
                args[1] = [list(range(args[1] * 2))] * len(f)
        elif m is Contract:
            c2 = ch[f] * args[0] ** 2
        elif m is Expand:
            c2 = ch[f] // args[0] ** 2
        elif adv and m is DiscriminatorConv:
            args.insert(0, ch[f])
        else:
            c2 = ch[f]

        m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # module
        t = str(m)[8:-2].replace('__main__.', '')  # module type
        # np = sum([x.numel() for x in m_.parameters()])  # number params
        # m_.i, m_.f, m_.type, m_.np = i, f, t, np  # attach index, 'from' index, type, number params
        m_.i, m_.f, m_.type = i, f, t  # attach index, 'from' index, type
        # LOGGER.info('%3s%18s%3s%10.0f  %-40s%-30s' % (i, f, n_, t, args))  # print
        LOGGER.info('%3s%18s%3s  %-40s%-30s' % (i, f, n_, t, args))  # print
        save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelist
        layers.append(m_)
        if i == 0:
            ch = []
        ch.append(c2)
    return nn.Sequential(*layers), sorted(save)
Exemple #22
0
def plot_labels(labels, names=(), save_dir=Path('')):
    # plot dataset labels
    LOGGER.info(f"Plotting labels to {save_dir / 'labels.jpg'}... ")
    c, b = labels[:, 0], labels[:, 1:].transpose()  # classes, boxes
    nc = int(c.max() + 1)  # number of classes
    x = pd.DataFrame(b.transpose(), columns=['x', 'y', 'width', 'height'])

    # seaborn correlogram
    sn.pairplot(x,
                corner=True,
                diag_kind='auto',
                kind='hist',
                diag_kws=dict(bins=50),
                plot_kws=dict(pmax=0.9))
    plt.savefig(save_dir / 'labels_correlogram.jpg', dpi=200)
    plt.close()

    # matplotlib labels
    matplotlib.use('svg')  # faster
    ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)[1].ravel()
    y = ax[0].hist(c, bins=np.linspace(0, nc, nc + 1) - 0.5, rwidth=0.8)
    try:  # color histogram bars by class
        [
            y[2].patches[i].set_color([x / 255 for x in colors(i)])
            for i in range(nc)
        ]  # known issue #3195
    except Exception:
        pass
    ax[0].set_ylabel('instances')
    if 0 < len(names) < 30:
        ax[0].set_xticks(range(len(names)))
        ax[0].set_xticklabels(names, rotation=90, fontsize=10)
    else:
        ax[0].set_xlabel('classes')
    sn.histplot(x, x='x', y='y', ax=ax[2], bins=50, pmax=0.9)
    sn.histplot(x, x='width', y='height', ax=ax[3], bins=50, pmax=0.9)

    # rectangles
    labels[:, 1:3] = 0.5  # center
    labels[:, 1:] = xywh2xyxy(labels[:, 1:]) * 2000
    img = Image.fromarray(np.ones((2000, 2000, 3), dtype=np.uint8) * 255)
    for cls, *box in labels[:1000]:
        ImageDraw.Draw(img).rectangle(box, width=1,
                                      outline=colors(cls))  # plot
    ax[1].imshow(img)
    ax[1].axis('off')

    for a in [0, 1, 2, 3]:
        for s in ['top', 'right', 'left', 'bottom']:
            ax[a].spines[s].set_visible(False)

    plt.savefig(save_dir / 'labels.jpg', dpi=200)
    matplotlib.use('Agg')
    plt.close()
Exemple #23
0
 def print_results(k, verbose=True):
     k = k[np.argsort(k.prod(1))]  # sort small to large
     x, best = metric(k, wh0)
     bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n  # best possible recall, anch > thr
     s = f'{PREFIX}thr={thr:.2f}: {bpr:.4f} best possible recall, {aat:.2f} anchors past thr\n' \
         f'{PREFIX}n={n}, img_size={img_size}, metric_all={x.mean():.3f}/{best.mean():.3f}-mean/best, ' \
         f'past_thr={x[x > thr].mean():.3f}-mean: '
     for i, x in enumerate(k):
         s += '%i,%i, ' % (round(x[0]), round(x[1]))
     if verbose:
         LOGGER.info(s[:-2])
     return k
Exemple #24
0
 def __call__(self, epoch, fitness):
     if fitness >= self.best_fitness:  # >= 0 to allow for early zero-fitness stage of training
         self.best_epoch = epoch
         self.best_fitness = fitness
     delta = epoch - self.best_epoch  # epochs without improvement
     self.possible_stop = delta >= (self.patience - 1)  # possible stop may occur next epoch
     stop = delta >= self.patience  # stop training if patience exceeded
     if stop:
         LOGGER.info(f'Stopping training early as no improvement observed in last {self.patience} epochs. '
                     f'Best results observed at epoch {self.best_epoch}, best model saved as best.pt.\n'
                     f'To update EarlyStopping(patience={self.patience}) pass a new patience value, '
                     f'i.e. `python train.py --patience 300` or use `--patience 0` to disable EarlyStopping.')
     return stop
Exemple #25
0
def export_edgetpu(keras_model, im, file, prefix=colorstr('Edge TPU:')):
    # YOLOv5 Edge TPU export https://coral.ai/docs/edgetpu/models-intro/
    try:
        cmd = 'edgetpu_compiler --version'
        help_url = 'https://coral.ai/docs/edgetpu/compiler/'
        assert platform.system() == 'Linux', f'export only supported on Linux. See {help_url}'
        if subprocess.run(cmd + ' >/dev/null', shell=True).returncode != 0:
            LOGGER.info(f'\n{prefix} export requires Edge TPU compiler. Attempting install from {help_url}')
            sudo = subprocess.run('sudo --version >/dev/null', shell=True).returncode == 0  # sudo installed on system
            for c in ['curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -',
                      'echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" | sudo tee /etc/apt/sources.list.d/coral-edgetpu.list',
                      'sudo apt-get update',
                      'sudo apt-get install edgetpu-compiler']:
                subprocess.run(c if sudo else c.replace('sudo ', ''), shell=True, check=True)
        ver = subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().split()[-1]

        LOGGER.info(f'\n{prefix} starting export with Edge TPU compiler {ver}...')
        f = str(file).replace('.pt', '-int8_edgetpu.tflite')  # Edge TPU model
        f_tfl = str(file).replace('.pt', '-int8.tflite')  # TFLite model

        cmd = f"edgetpu_compiler -s {f_tfl}"
        subprocess.run(cmd, shell=True, check=True)

        LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
        return f
    except Exception as e:
        LOGGER.info(f'\n{prefix} export failure: {e}')
Exemple #26
0
def smart_optimizer(model,
                    name='Adam',
                    lr=0.001,
                    momentum=0.9,
                    weight_decay=1e-5):
    # YOLOv5 3-param group optimizer: 0) weights with decay, 1) weights no decay, 2) biases no decay
    g = [], [], []  # optimizer parameter groups
    bn = tuple(v for k, v in nn.__dict__.items()
               if 'Norm' in k)  # normalization layers, i.e. BatchNorm2d()
    for v in model.modules():
        if hasattr(v, 'bias') and isinstance(v.bias,
                                             nn.Parameter):  # bias (no decay)
            g[2].append(v.bias)
        if isinstance(v, bn):  # weight (no decay)
            g[1].append(v.weight)
        elif hasattr(v, 'weight') and isinstance(
                v.weight, nn.Parameter):  # weight (with decay)
            g[0].append(v.weight)

    if name == 'Adam':
        optimizer = torch.optim.Adam(g[2], lr=lr,
                                     betas=(momentum,
                                            0.999))  # adjust beta1 to momentum
    elif name == 'AdamW':
        optimizer = torch.optim.AdamW(g[2],
                                      lr=lr,
                                      betas=(momentum, 0.999),
                                      weight_decay=0.0)
    elif name == 'RMSProp':
        optimizer = torch.optim.RMSprop(g[2], lr=lr, momentum=momentum)
    elif name == 'SGD':
        optimizer = torch.optim.SGD(g[2],
                                    lr=lr,
                                    momentum=momentum,
                                    nesterov=True)
    else:
        raise NotImplementedError(f'Optimizer {name} not implemented.')

    optimizer.add_param_group({
        'params': g[0],
        'weight_decay': weight_decay
    })  # add g0 with weight_decay
    optimizer.add_param_group({
        'params': g[1],
        'weight_decay': 0.0
    })  # add g1 (BatchNorm2d weights)
    LOGGER.info(
        f"{colorstr('optimizer:')} {type(optimizer).__name__} with parameter groups "
        f"{len(g[1])} weight (no decay), {len(g[0])} weight, {len(g[2])} bias")
    return optimizer
Exemple #27
0
def parse_model(d, ch, model, imgsz):  # model_dict, input_channels(3)
    LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10}  {'module':<40}{'arguments':<30}")
    anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']
    na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors  # number of anchors
    no = na * (nc + 5)  # number of outputs = anchors * (classes + 5)

    layers, save, c2 = [], [], ch[-1]  # layers, savelist, ch out
    for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']):  # from, number, module, args
        m_str = m
        m = eval(m) if isinstance(m, str) else m  # eval strings
        for j, a in enumerate(args):
            try:
                args[j] = eval(a) if isinstance(a, str) else a  # eval strings
            except NameError:
                pass

        n = max(round(n * gd), 1) if n > 1 else n  # depth gain
        if m in [nn.Conv2d, Conv, Bottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv, BottleneckCSP, C3]:
            c1, c2 = ch[f], args[0]
            c2 = make_divisible(c2 * gw, 8) if c2 != no else c2

            args = [c1, c2, *args[1:]]
            if m in [BottleneckCSP, C3]:
                args.insert(2, n)
                n = 1
        elif m is nn.BatchNorm2d:
            args = [ch[f]]
        elif m is Concat:
            c2 = sum(ch[-1 if x == -1 else x + 1] for x in f)
        elif m is Detect:
            args.append([ch[x + 1] for x in f])
            if isinstance(args[1], int):  # number of anchors
                args[1] = [list(range(args[1] * 2))] * len(f)
            args.append(imgsz)
        else:
            c2 = ch[f]

        tf_m = eval('TF' + m_str.replace('nn.', ''))
        m_ = keras.Sequential([tf_m(*args, w=model.model[i][j]) for j in range(n)]) if n > 1 \
            else tf_m(*args, w=model.model[i])  # module

        torch_m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # module
        t = str(m)[8:-2].replace('__main__.', '')  # module type
        np = sum(x.numel() for x in torch_m_.parameters())  # number params
        m_.i, m_.f, m_.type, m_.np = i, f, t, np  # attach index, 'from' index, type, number params
        LOGGER.info(f'{i:>3}{str(f):>18}{str(n):>3}{np:>10}  {t:<40}{str(args):<30}')  # print
        save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelist
        layers.append(m_)
        ch.append(c2)
    return keras.Sequential(layers), sorted(save)
Exemple #28
0
    def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, model=None, imgsz=(640, 640)):  # model, channels, classes
        super().__init__()
        if isinstance(cfg, dict):
            self.yaml = cfg  # model dict
        else:  # is *.yaml
            import yaml  # for torch hub
            self.yaml_file = Path(cfg).name
            with open(cfg) as f:
                self.yaml = yaml.load(f, Loader=yaml.FullLoader)  # model dict

        # Define model
        if nc and nc != self.yaml['nc']:
            LOGGER.info(f"Overriding {cfg} nc={self.yaml['nc']} with nc={nc}")
            self.yaml['nc'] = nc  # override yaml value
        self.model, self.savelist = parse_model(deepcopy(self.yaml), ch=[ch], model=model, imgsz=imgsz)
Exemple #29
0
    def __init__(self, sources='streams.txt', img_size=640, stride=32, auto=True):
        self.mode = 'stream'
        self.img_size = img_size
        self.stride = stride

        if os.path.isfile(sources):
            with open(sources) as f:
                sources = [x.strip() for x in f.read().strip().splitlines() if len(x.strip())]
        else:
            sources = [sources]

        n = len(sources)
        self.imgs, self.fps, self.frames, self.threads = [None] * n, [0] * n, [0] * n, [None] * n
        self.sources = [clean_str(x) for x in sources]  # clean source names for later
        self.auto = auto
        for i, s in enumerate(sources):  # index, source
            # Start thread to read frames from video stream
            st = f'{i + 1}/{n}: {s}... '
            if urlparse(s).hostname in ('www.youtube.com', 'youtube.com', 'youtu.be'):  # if source is YouTube video
                check_requirements(('pafy', 'youtube_dl==2020.12.2'))
                import pafy
                s = pafy.new(s).getbest(preftype="mp4").url  # YouTube URL
            s = eval(s) if s.isnumeric() else s  # i.e. s = '0' local webcam
            if s == 0:
                assert not is_colab(), '--source 0 webcam unsupported on Colab. Rerun command in a local environment.'
                assert not is_kaggle(), '--source 0 webcam unsupported on Kaggle. Rerun command in a local environment.'
            cap = cv2.VideoCapture(s)
            assert cap.isOpened(), f'{st}Failed to open {s}'
            w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
            h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
            fps = cap.get(cv2.CAP_PROP_FPS)  # warning: may return 0 or nan
            self.frames[i] = max(int(cap.get(cv2.CAP_PROP_FRAME_COUNT)), 0) or float('inf')  # infinite stream fallback
            self.fps[i] = max((fps if math.isfinite(fps) else 0) % 100, 0) or 30  # 30 FPS fallback

            _, self.imgs[i] = cap.read()  # guarantee first frame
            self.threads[i] = Thread(target=self.update, args=([i, cap, s]), daemon=True)
            LOGGER.info(f"{st} Success ({self.frames[i]} frames {w}x{h} at {self.fps[i]:.2f} FPS)")
            self.threads[i].start()
        LOGGER.info('')  # newline

        # check for common shapes
        s = np.stack([letterbox(x, self.img_size, stride=self.stride, auto=self.auto)[0].shape for x in self.imgs])
        self.rect = np.unique(s, axis=0).shape[0] == 1  # rect inference if all shapes equal
        if not self.rect:
            LOGGER.warning('WARNING: Stream shapes differ. For optimal performance supply similarly-shaped streams.')
Exemple #30
0
    def check_and_upload_dataset(self, opt):
        """
        Check if the dataset format is compatible and upload it as W&B artifact

        arguments:
        opt (namespace)-- Commandline arguments for current run

        returns:
        Updated dataset info dictionary where local dataset paths are replaced by WAND_ARFACT_PREFIX links.
        """
        assert wandb, 'Install wandb to upload dataset'
        config_path = self.log_dataset_artifact(
            opt.data, opt.single_cls, 'YOLOv5'
            if opt.project == 'runs/train' else Path(opt.project).stem)
        LOGGER.info(f"Created dataset config file {config_path}")
        with open(config_path, errors='ignore') as f:
            wandb_data_dict = yaml.safe_load(f)
        return wandb_data_dict