model = TAM(config["model"], window_length=config["model"]["context_window"]) model.to(opts.device) weights = weights.to(opts.device) pos_weight = weights[1] / weights[0] pos_weight.fill_(4) loss_function = nn.BCEWithLogitsLoss(reduction='none', pos_weight=pos_weight) parameters = filter(lambda p: p.requires_grad, model.parameters()) optimizer = optim.Adam(parameters) total_params = sum(p.numel() for p in model.parameters()) total_trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad) print("Total Params:", number_h(total_params)) print("Total Trainable Params:", number_h(total_trainable_params)) #################################################################### # Training Pipeline #################################################################### trainer = BaselineTrainer(val_loader, model, train_loader, dev_loader, loss_function, [optimizer], config, opts.device) #################################################################### # Training Loop #################################################################### best_loss = None best_score = 0 final_posteriors = []
def clf_features_baseline_runner(yaml, word2idx, idx2word, weights, cluster=False): if cluster is False: from logger.experiment import Experiment # torch.manual_seed(0) # torch.backends.cudnn.deterministic = True # torch.backends.cudnn.benchmark = False opts, config = train_options(yaml) #################################################################### # Data Loading and Preprocessing #################################################################### X_train, y_train, X_val, y_val, X_test, y_test = load_dataset( config["data"]["dataset"]) # load word embeddings # if config["data"]["embeddings"] == "wiki.en.vec": # word2idx, idx2word, weights = load_word_vectors_from_fasttext( # os.path.join(EMB_DIR, config["data"]["embeddings"]), # config["data"]["embeddings_dim"]) # else: # word2idx, idx2word, weights = load_word_vectors( # os.path.join(EMB_DIR, config["data"]["embeddings"]), # config["data"]["embeddings_dim"]) #################################################################### # Linguistic Features Loading and Selection #################################################################### # Any features/lexicon should be in the form of a dictionary # For example: lex = {'word':[0., 1., ..., 0.]} # load affect features print("Loading linguistic features...") # todo: streamline feature loading pipeline features, feat_length = load_features(config["data"]["features"]) # assert ... same len # build dataset print("Building training dataset...") train_set = ClfDataset(X_train, y_train, word2idx, feat_length=feat_length, features_dict=features) print("Building validation dataset...") val_set = ClfDataset(X_test, y_test, word2idx, features_dict=features, feat_length=feat_length) test_set = ClfDataset(X_test, y_test, word2idx, features_dict=features, feat_length=feat_length) train_set.truncate(500) val_set.truncate(100) src_lengths = [len(x) for x in train_set.data] val_lengths = [len(x) for x in val_set.data] test_lengths = [len(x) for x in test_set.data] # select sampler & dataloader train_sampler = BucketBatchSampler(src_lengths, config["batch_size"], True) val_sampler = SortedSampler(val_lengths) val_sampler_train = SortedSampler(src_lengths) test_sampler = SortedSampler(test_lengths) train_loader = DataLoader(train_set, batch_sampler=train_sampler, num_workers=opts.cores, collate_fn=ClfCollate_withFeatures()) val_loader = DataLoader(val_set, sampler=val_sampler, batch_size=config["batch_size"], num_workers=opts.cores, collate_fn=ClfCollate_withFeatures()) val_loader_train_dataset = DataLoader(train_set, sampler=val_sampler_train, batch_size=config["batch_size"], num_workers=opts.cores, collate_fn=ClfCollate_withFeatures()) test_loader = DataLoader(test_set, sampler=test_sampler, batch_size=config["batch_size"], num_workers=opts.cores, collate_fn=ClfCollate_withFeatures()) #################################################################### # Model #################################################################### model = BaselineConcClassifier(ntokens=weights.shape[0], nclasses=len(set(train_set.labels)), feat_size=feat_length, **config["model"]) model.word_embedding.embedding.weight = nn.Parameter( torch.from_numpy(weights), requires_grad=False) model.to(opts.device) print(model) #################################################################### # Count total parameters of model #################################################################### total_params = sum(p.numel() for p in model.parameters()) total_trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad) print("Total Params:", number_h(total_params)) print("Total Trainable Params:", number_h(total_trainable_params)) if config["class_weights"]: class_weights = class_weigths(train_set.labels, to_pytorch=True) class_weights = class_weights.to(opts.device) criterion = nn.CrossEntropyLoss(weight=class_weights) else: criterion = nn.CrossEntropyLoss() clf_parameters = filter(lambda p: p.requires_grad, model.parameters()) clf_optimizer = Adam(clf_parameters, weight_decay=1e-5) #################################################################### # Training Pipeline #################################################################### _outputs = [] def batch_callback(i_batch, losses, batch_outputs): _outputs.append(batch_outputs) if trainer.step % config["log_interval"] == 0: outputs = list(zip(*_outputs)) _losses = numpy.array(losses[-config["log_interval"]:]).mean(0) exp.update_metric("clf-loss", _losses) _y_hat = torch.cat(outputs[0]).max(-1)[1].cpu().data.numpy() _y = torch.cat(outputs[1]).cpu().data.numpy() f1 = f1_score(_y, _y_hat, average='macro') exp.update_metric("f1-train", f1) losses_log = exp.log_metrics(["clf-loss", 'f1-train']) exp.update_value("progress", trainer.progress_log + "\n" + losses_log) # clean lines and move cursor back up N lines print("\n\033[K" + losses_log) print("\033[F" * (len(losses_log.split("\n")) + 2)) _outputs.clear() # Trainer: responsible for managing the training process trainer = ClfTrainer_withFeatures( model=model, train_loader=train_loader, valid_loader=val_loader, valid_loader_train_set=val_loader_train_dataset, test_loader=test_loader, criterion=criterion, optimizers=clf_optimizer, config=config, device=opts.device, batch_end_callbacks=None) #################################################################### # Experiment: logging and visualizing the training process #################################################################### if cluster is False: exp = Experiment(opts.name, config, src_dirs=opts.source, output_dir=EXP_DIR) exp.add_metric("ep_loss", "line", "epoch loss", ["TRAIN", "VAL"]) exp.add_metric("ep_f1", "line", "epoch f1", ["TRAIN", "VAL"]) exp.add_metric("ep_acc", "line", "epoch accuracy", ["TRAIN", "VAL"]) exp.add_metric("ep_pre", "line", "epoch precision", ["TRAIN", "VAL"]) exp.add_metric("ep_rec", "line", "epoch recall", ["TRAIN", "VAL"]) exp.add_value("epoch", title="epoch summary", vis_type="text") exp.add_value("progress", title="training progress", vis_type="text") #################################################################### # Training Loop #################################################################### best_loss = None early_stopping = Early_stopping("min", config["patience"]) for epoch in range(config["epochs"]): train_loss = trainer.train_epoch() val_loss, y, y_pred = trainer.eval_epoch(val_set=True) _, y_train, y_pred_train = trainer.eval_epoch(train_set=True) # Calculate accuracy and f1-macro on the evaluation set if cluster is False: exp.update_metric("ep_loss", train_loss.item(), "TRAIN") exp.update_metric("ep_loss", val_loss.item(), "VAL") exp.update_metric("ep_f1", f1_macro(y_train, y_pred_train), "TRAIN") exp.update_metric("ep_f1", f1_macro(y, y_pred), "VAL") exp.update_metric("ep_acc", acc(y_train, y_pred_train), "TRAIN") exp.update_metric("ep_acc", acc(y, y_pred), "VAL") exp.update_metric("ep_pre", precision_macro(y_train, y_pred_train), "TRAIN") exp.update_metric("ep_pre", precision_macro(y, y_pred), "VAL") exp.update_metric("ep_rec", recall_macro(y_train, y_pred_train), "TRAIN") exp.update_metric("ep_rec", recall_macro(y, y_pred), "VAL") print() epoch_log = exp.log_metrics( ["ep_loss", "ep_f1", "ep_acc", "ep_pre", "ep_rec"]) print(epoch_log) exp.update_value("epoch", epoch_log) exp.save() else: print("epoch: {}, train loss: {}, val loss: {}, f1: {}".format( epoch, train_loss.item(), val_loss.item(), f1_macro(y, y_pred))) # Save the model if the validation loss is the best we've seen so far. if not best_loss or val_loss < best_loss: best_loss = val_loss trainer.best_val_loss = best_loss trainer.acc = acc(y, y_pred) trainer.f1 = f1_macro(y, y_pred) trainer.precision = precision_macro(y, y_pred) trainer.recall = recall_macro(y, y_pred) trainer.checkpoint(name=opts.name, verbose=False) if early_stopping.stop(val_loss): print("Early Stopping...") break print("\n") # return trainer.best_val_loss, trainer.acc, trainer.f1, trainer.precision, trainer.recall ################# # Test ################# _, y_test_, y_test_predicted = trainer.eval_epoch(test_set=True) f1_test = f1_macro(y_test_, y_test_predicted) acc_test = acc(y_test_, y_test_predicted) print("#" * 33) print("F1 for test set: {}".format(f1_test)) print("Accuracy for test set: {}".format(acc_test)) print("#" * 33) return trainer.best_val_loss, trainer.acc, trainer.f1, trainer.precision, trainer.recall, f1_test, acc_test