Exemple #1
0
def print_mutation(hyp, results, yaml_file='hyp_evolved.yaml', bucket=''):
    # Print mutation results to evolve.txt (for use with train.py --evolve)
    a = '%10s' * len(hyp) % tuple(hyp.keys())  # hyperparam keys
    b = '%10.3g' * len(hyp) % tuple(hyp.values())  # hyperparam values
    c = '%10.4g' * len(results) % results  # results (P, R, [email protected], [email protected]:0.95, val_losses x 3)
    print('\n%s\n%s\nEvolved fitness: %s\n' % (a, b, c))

    if bucket:
        url = 'gs://%s/evolve.txt' % bucket
        if gsutil_getsize(url) > (os.path.getsize('evolve.txt') if os.path.exists('evolve.txt') else 0):
            os.system('gsutil cp %s .' % url)  # download evolve.txt if larger than local

    with open('evolve.txt', 'a') as f:  # append result
        f.write(c + b + '\n')
    x = np.unique(np.loadtxt('evolve.txt', ndmin=2), axis=0)  # load unique rows
    x = x[np.argsort(-fitness(x))]  # sort
    np.savetxt('evolve.txt', x, '%10.3g')  # save sort by fitness

    # Save yaml
    for i, k in enumerate(hyp.keys()):
        hyp[k] = float(x[0, i + 7])
    with open(yaml_file, 'w') as f:
        results = tuple(x[0, :7])
        c = '%10.4g' * len(results) % results  # results (P, R, [email protected], [email protected]:0.95, val_losses x 3)
        f.write('# Hyperparameter Evolution Results\n# Generations: %g\n# Metrics: ' % len(x) + c + '\n\n')
        yaml.dump(hyp, f, sort_keys=False)

    if bucket:
        os.system('gsutil cp evolve.txt %s gs://%s' % (yaml_file, bucket))  # upload
Exemple #2
0
def print_mutation(hyp, results, yaml_file="hyp_evolved.yaml", bucket=""):
    # Print mutation results to evolve.txt (for use with train.py --evolve)
    a = "%10s" * len(hyp) % tuple(hyp.keys())  # hyperparam keys
    b = "%10.3g" * len(hyp) % tuple(hyp.values())  # hyperparam values
    c = (
        "%10.4g" * len(results) % results
    )  # results (P, R, [email protected], [email protected]:0.95, val_losses x 3)
    print("\n%s\n%s\nEvolved fitness: %s\n" % (a, b, c))

    if bucket:
        url = "gs://%s/evolve.txt" % bucket
        if gsutil_getsize(url) > (
            os.path.getsize("evolve.txt") if os.path.exists("evolve.txt") else 0
        ):
            os.system(
                "gsutil cp %s ." % url
            )  # download evolve.txt if larger than local

    with open("evolve.txt", "a") as f:  # append result
        f.write(c + b + "\n")
    x = np.unique(np.loadtxt("evolve.txt", ndmin=2), axis=0)  # load unique rows
    x = x[np.argsort(-fitness(x))]  # sort
    np.savetxt("evolve.txt", x, "%10.3g")  # save sort by fitness

    # Save yaml
    for i, k in enumerate(hyp.keys()):
        hyp[k] = float(x[0, i + 7])
    with open(yaml_file, "w") as f:
        results = tuple(x[0, :7])
        c = (
            "%10.4g" * len(results) % results
        )  # results (P, R, [email protected], [email protected]:0.95, val_losses x 3)
        f.write(
            "# Hyperparameter Evolution Results\n# Generations: %g\n# Metrics: "
            % len(x)
            + c
            + "\n\n"
        )
        yaml.dump(hyp, f, sort_keys=False)

    if bucket:
        os.system("gsutil cp evolve.txt %s gs://%s" % (yaml_file, bucket))  # upload