Exemple #1
0
def compute_beliefs(env, args, reward_decoder, latent_mean, latent_logvar, goal):
    num_cells = env.observation_space.high[0] + 1
    unwrapped_env = env.venv.unwrapped.envs[0]

    if not args.disable_stochasticity_in_latent:
        # take several samples fromt he latent distribution
        samples = utl.sample_gaussian(latent_mean.view(-1), latent_logvar.view(-1), 100)
    else:
        samples = torch.cat((latent_mean.view(-1), latent_logvar.view(-1))).unsqueeze(0)

    # compute reward predictions for those
    if reward_decoder.multi_head:
        rew_pred_means = torch.mean(reward_decoder(samples, None), dim=0)  # .reshape((1, -1))
        rew_pred_vars = torch.var(reward_decoder(samples, None), dim=0)  # .reshape((1, -1))
    else:
        tsm = []
        tsv = []
        for st in range(num_cells ** 2):
            task_id = unwrapped_env.id_to_task(torch.tensor([st]))
            curr_state = unwrapped_env.goal_to_onehot_id(task_id).expand((samples.shape[0], 2))
            if unwrapped_env.oracle:
                if isinstance(goal, np.ndarray):
                    goal = torch.from_numpy(goal)
                curr_state = torch.cat((curr_state, goal.repeat(curr_state.shape[0], 1).float()), dim=1)
            tsm.append(torch.mean(reward_decoder(samples, curr_state)))
            tsv.append(torch.var(reward_decoder(samples, curr_state)))
        rew_pred_means = torch.stack(tsm).reshape((1, -1))
        rew_pred_vars = torch.stack(tsv).reshape((1, -1))
    # rew_pred_means = rew_pred_means[-1][0]

    return rew_pred_means, rew_pred_vars
Exemple #2
0
def plot_vae_loss(args, latent_means, latent_logvars, prev_obs, next_obs,
                  actions, rewards, task, image_folder, iter_idx,
                  reward_decoder, state_decoder, task_decoder,
                  compute_task_reconstruction_loss,
                  compute_rew_reconstruction_loss,
                  compute_state_reconstruction_loss, compute_kl_loss):
    num_rollouts = len(latent_means)
    num_episode_steps = len(latent_means[0])
    if not args.disable_stochasticity_in_latent:
        num_samples = 10  # how many samples to use to get an average/std ELBO loss
    else:
        num_samples = 1

    latent_means = torch.cat(latent_means)
    latent_logvars = torch.cat(latent_logvars)

    prev_obs = torch.cat(prev_obs).to(device)
    next_obs = torch.cat(next_obs).to(device)
    actions = torch.cat(actions).to(device)
    rewards = torch.cat(rewards).to(device)

    # - we will try to make predictions for each tuple in trajectory, hence we need to expand the targets
    prev_obs = prev_obs.unsqueeze(0).expand(num_samples,
                                            *prev_obs.shape).to(device)
    next_obs = next_obs.unsqueeze(0).expand(num_samples,
                                            *next_obs.shape).to(device)
    actions = actions.unsqueeze(0).expand(num_samples,
                                          *actions.shape).to(device)
    rewards = rewards.unsqueeze(0).expand(num_samples,
                                          *rewards.shape).to(device)

    rew_reconstr_mean = []
    rew_reconstr_std = []
    rew_pred_std = []

    state_reconstr_mean = []
    state_reconstr_std = []
    state_pred_std = []

    task_reconstr_mean = []
    task_reconstr_std = []
    task_pred_std = []

    # compute the sum of ELBO_t's by looping through (trajectory length + prior)
    for i in range(len(latent_means)):

        curr_latent_mean = latent_means[i]
        curr_latent_logvar = latent_logvars[i]

        # compute the reconstruction loss
        if not args.disable_stochasticity_in_latent:
            # take several samples from the latent distribution
            latent_samples = utl.sample_gaussian(curr_latent_mean.view(-1),
                                                 curr_latent_logvar.view(-1),
                                                 num_samples)
        else:
            latent_samples = torch.cat(
                (curr_latent_mean.view(-1),
                 curr_latent_logvar.view(-1))).unsqueeze(0)

        # expand: each latent sample will be used to make predictions for the entire trajectory
        len_traj = prev_obs.shape[1]

        # compute reconstruction losses
        if task_decoder is not None:
            loss_task, task_pred = compute_task_reconstruction_loss(
                latent_samples, task, return_predictions=True)

            # average/std across the different samples
            task_reconstr_mean.append(loss_task.mean())
            task_reconstr_std.append(loss_task.std())
            task_pred_std.append(task_pred.std())

        latent_samples = latent_samples.unsqueeze(1).expand(
            num_samples, len_traj, latent_samples.shape[-1])

        if reward_decoder is not None:
            loss_rew, rew_pred = compute_rew_reconstruction_loss(
                latent_samples,
                prev_obs,
                next_obs,
                actions,
                rewards,
                return_predictions=True)
            # sum along length of trajectory
            loss_rew = loss_rew.sum(dim=1)
            rew_pred = rew_pred.sum(dim=1)

            # average/std across the different samples
            rew_reconstr_mean.append(loss_rew.mean())
            rew_reconstr_std.append(loss_rew.std())
            rew_pred_std.append(rew_pred.std())

        if state_decoder is not None:
            loss_state, state_pred = compute_state_reconstruction_loss(
                latent_samples,
                prev_obs,
                next_obs,
                actions,
                return_predictions=True)
            # sum along length of trajectory
            loss_state = loss_state.sum(dim=1)
            state_pred = state_pred.sum(dim=1)

            # average/std across the different samples
            state_reconstr_mean.append(loss_state.mean())
            state_reconstr_std.append(loss_state.std())
            state_pred_std.append(state_pred.std())

    # kl term
    vae_kl_term = compute_kl_loss(latent_means, latent_logvars, None)

    # --- plot KL term ---

    x = range(len(vae_kl_term))

    plt.plot(x, vae_kl_term.cpu().detach().numpy(), 'b-')
    vae_kl_term = vae_kl_term.cpu()
    for tj in np.cumsum([0,
                         *[num_episode_steps for _ in range(num_rollouts)]]):
        span = vae_kl_term.max() - vae_kl_term.min()
        plt.plot(
            [tj + 0.5, tj + 0.5],
            [vae_kl_term.min() - span * 0.05,
             vae_kl_term.max() + span * 0.05],
            'k--',
            alpha=0.5)
    plt.xlabel('env steps', fontsize=15)
    plt.ylabel('KL term', fontsize=15)
    plt.tight_layout()
    if image_folder is not None:
        plt.savefig('{}/{}_kl'.format(image_folder, iter_idx))
        plt.close()
    else:
        plt.show()

    # --- plot rew reconstruction ---

    if reward_decoder is not None:

        rew_reconstr_mean = torch.stack(
            rew_reconstr_mean).detach().cpu().numpy()
        rew_reconstr_std = torch.stack(rew_reconstr_std).detach().cpu().numpy()
        rew_pred_std = torch.stack(rew_pred_std).detach().cpu().numpy()

        plt.figure(figsize=(12, 5))
        plt.subplot(1, 2, 1)
        p = plt.plot(x, rew_reconstr_mean, 'b-')
        plt.gca().fill_between(x,
                               rew_reconstr_mean - rew_reconstr_std,
                               rew_reconstr_mean + rew_reconstr_std,
                               facecolor=p[0].get_color(),
                               alpha=0.1)
        for tj in np.cumsum(
            [0, *[num_episode_steps for _ in range(num_rollouts)]]):
            min_y = (rew_reconstr_mean - rew_reconstr_std).min()
            max_y = (rew_reconstr_mean + rew_reconstr_std).max()
            span = max_y - min_y
            plt.plot([tj + 0.5, tj + 0.5],
                     [min_y - span * 0.05, max_y + span * 0.05],
                     'k--',
                     alpha=0.5)
        plt.xlabel('env steps', fontsize=15)
        plt.ylabel('reward reconstruction error', fontsize=15)

        plt.subplot(1, 2, 2)
        plt.plot(x, rew_pred_std, 'b-')
        for tj in np.cumsum(
            [0, *[num_episode_steps for _ in range(num_rollouts)]]):
            span = rew_pred_std.max() - rew_pred_std.min()
            plt.plot([tj + 0.5, tj + 0.5], [
                rew_pred_std.min() - span * 0.05,
                rew_pred_std.max() + span * 0.05
            ],
                     'k--',
                     alpha=0.5)
        plt.xlabel('env steps', fontsize=15)
        plt.ylabel('std of rew reconstruction', fontsize=15)
        plt.tight_layout()
        if image_folder is not None:
            plt.savefig('{}/{}_rew_reconstruction'.format(
                image_folder, iter_idx))
            plt.close()
        else:
            plt.show()

    # --- plot state reconstruction ---

    if state_decoder is not None:

        plt.figure(figsize=(12, 5))

        state_reconstr_mean = torch.stack(
            state_reconstr_mean).detach().cpu().numpy()
        state_reconstr_std = torch.stack(
            state_reconstr_std).detach().cpu().numpy()
        state_pred_std = torch.stack(state_pred_std).detach().cpu().numpy()

        plt.subplot(1, 2, 1)
        p = plt.plot(x, state_reconstr_mean, 'b-')
        plt.gca().fill_between(x,
                               state_reconstr_mean - state_reconstr_std,
                               state_reconstr_mean + state_reconstr_std,
                               facecolor=p[0].get_color(),
                               alpha=0.1)
        for tj in np.cumsum(
            [0, *[num_episode_steps for _ in range(num_rollouts)]]):
            min_y = (state_reconstr_mean - state_reconstr_std).min()
            max_y = (state_reconstr_mean + state_reconstr_std).max()
            span = max_y - min_y
            plt.plot([tj + 0.5, tj + 0.5],
                     [min_y - span * 0.05, max_y + span * 0.05],
                     'k--',
                     alpha=0.5)
        plt.xlabel('env steps', fontsize=15)
        plt.ylabel('state reconstruction error', fontsize=15)

        plt.subplot(1, 2, 2)
        plt.plot(x, state_pred_std, 'b-')
        for tj in np.cumsum(
            [0, *[num_episode_steps for _ in range(num_rollouts)]]):
            span = state_pred_std.max() - state_pred_std.min()
            plt.plot([tj + 0.5, tj + 0.5], [
                state_pred_std.min() - span * 0.05,
                state_pred_std.max() + span * 0.05
            ],
                     'k--',
                     alpha=0.5)
        plt.xlabel('env steps', fontsize=15)
        plt.ylabel('std of state reconstruction', fontsize=15)
        plt.tight_layout()
        if image_folder is not None:
            plt.savefig('{}/{}_state_reconstruction'.format(
                image_folder, iter_idx))
            plt.close()
        else:
            plt.show()

    # --- plot task reconstruction ---

    if task_decoder is not None:

        plt.figure(figsize=(12, 5))

        task_reconstr_mean = torch.stack(
            task_reconstr_mean).detach().cpu().numpy()
        task_reconstr_std = torch.stack(
            task_reconstr_std).detach().cpu().numpy()
        task_pred_std = torch.stack(task_pred_std).detach().cpu().numpy()

        plt.subplot(1, 2, 1)
        p = plt.plot(x, task_reconstr_mean, 'b-')
        plt.gca().fill_between(x,
                               task_reconstr_mean - task_reconstr_std,
                               task_reconstr_mean + task_reconstr_std,
                               facecolor=p[0].get_color(),
                               alpha=0.1)
        for tj in np.cumsum(
            [0, *[num_episode_steps for _ in range(num_rollouts)]]):
            min_y = (task_reconstr_mean - task_reconstr_std).min()
            max_y = (task_reconstr_mean + task_reconstr_std).max()
            span = max_y - min_y
            plt.plot([tj + 0.5, tj + 0.5],
                     [min_y - span * 0.05, max_y + span * 0.05],
                     'k--',
                     alpha=0.5)
        plt.xlabel('env steps', fontsize=15)
        plt.ylabel('task reconstruction error', fontsize=15)

        plt.subplot(1, 2, 2)
        plt.plot(x, task_pred_std, 'b-')
        for tj in np.cumsum(
            [0, *[num_episode_steps for _ in range(num_rollouts)]]):
            span = task_pred_std.max() - task_pred_std.min()
            plt.plot([tj + 0.5, tj + 0.5], [
                task_pred_std.min() - span * 0.05,
                task_pred_std.max() + span * 0.05
            ],
                     'k--',
                     alpha=0.5)
        plt.xlabel('env steps', fontsize=15)
        plt.ylabel('std of task reconstruction', fontsize=15)
        plt.tight_layout()
        if image_folder is not None:
            plt.savefig('{}/{}_task_reconstruction'.format(
                image_folder, iter_idx))
            plt.close()
        else:
            plt.show()