Exemple #1
0
    def train(self):
        # Prepare image pyramid
        train_img = read_img(self.config)
        real = resize_img(train_img, self.config.start_scale, self.config)
        self.reals = creat_reals_pyramid(real, self.reals, self.config)

        prev_nfc = 0
        self.writer = SummaryWriter(f'{self.config.exp_dir}/logs')

        # Pyramid training
        for scale_iter in range(self.config.stop_scale + 1):
            # Become larger as scale_iter increase (maximum=128)
            self.config.nfc = min(
                self.config.nfc_init * pow(2, math.floor(scale_iter / 4)), 128)
            self.config.min_nfc = min(
                self.config.min_nfc_init * pow(2, math.floor(scale_iter / 4)),
                128)

            # Prepare directory to save images
            self.config.result_dir = f'{self.config.exp_dir}/{scale_iter}'
            os.makedirs(self.config.result_dir, exist_ok=True)
            plt.imsave(f'{self.config.result_dir}/real_scale.png',
                       torch2np(self.reals[scale_iter]),
                       vmin=0,
                       vmax=1)

            cur_discriminator, cur_generator = self.init_models()

            if prev_nfc == self.config.nfc:
                cur_generator.load_state_dict(
                    torch.load(
                        f'{self.config.exp_dir}/{scale_iter - 1}/generator.pth'
                    ))
                cur_discriminator.load_state_dict(
                    torch.load(
                        f'{self.config.exp_dir}/{scale_iter - 1}/discriminator.pth'
                    ))

            cur_z, cur_generator = self.train_single_stage(
                cur_discriminator, cur_generator)
            cur_generator = reset_grads(cur_generator, False)
            cur_generator.eval()
            cur_discriminator = reset_grads(cur_discriminator, False)
            cur_discriminator.eval()

            self.Gs.append(cur_generator)
            self.Zs.append(cur_z)
            self.noise_amps.append(self.config.noise_amp)

            torch.save(self.Zs, f'{self.config.exp_dir}/Zs.pth')
            torch.save(self.Gs, f'{self.config.exp_dir}/Gs.pth')
            torch.save(self.reals, f'{self.config.exp_dir}/reals.pth')
            torch.save(self.noise_amps, f'{self.config.exp_dir}/noiseAmp.pth')

            prev_nfc = self.config.nfc
            del cur_discriminator, cur_generator

        return
Exemple #2
0
def anno_inspect():
    with open('/media/csh/data/coco_2017/annotations/instances_val2017.json'
              ) as f:
        res = json.load(f)
    res = res['annotations']

    coco_anno = "/media/csh/data/coco_2017/val2017"
    for anno in res[:10]:
        image_id = anno['image_id']
        img_path = os.path.join(coco_anno, "%012d.jpg" % image_id)
        bbox = np.array(list(map(lambda x: int(x), anno['bbox'])))
        bbox[..., 2] = bbox[..., 0] + bbox[..., 2]
        bbox[..., 3] = bbox[..., 1] + bbox[..., 3]
        img = read_img(img_path)
        print(image_id, bbox)
        draw_box(img, bbox, debug=True)
Exemple #3
0
    def interactive_inspect(self, show_anno=False, imgs=None):
        if imgs is None:
            img_path = self.task_util.get_eval_imgs()
        else:
            img_path = imgs

        for p in img_path:
            print(p)
            image = read_img(p)
            image_id = os.path.splitext(os.path.basename(p))[0].lstrip('0')

            anno_box, anno_human_label = self.task_util.get_image_anno(
                image_id)

            predict_box, predict_box_confidence, predict_label, predict_score = self.predict(
                image)
            predict_human_label = [
                self.task_util.label_classes[x] for x in predict_label
            ]

            show_tags = list(
                zip(predict_human_label, [
                    "%.2f %.2f" % (box_conf, label_score) for box_conf,
                    label_score in zip(predict_box_confidence, predict_score)
                ]))

            print('predict labels: %s' % str(show_tags))
            print('annotate label: %s' % anno_human_label)
            if show_anno and len(anno_box) != 0:
                draw_box(image.copy(),
                         np.array(anno_box),
                         debug=True,
                         title='anno',
                         text=anno_human_label)
            if len(predict_box) != 0:
                draw_box(image.copy(),
                         predict_box,
                         debug=True,
                         title='predict',
                         text=show_tags)
Exemple #4
0
    def predict(self, image, specific=True, sess: tf.compat.v1.Session = None):
        if sess is None:
            sess = get_session()
        if isinstance(image, str):
            origin_image = read_img(image)
        else:
            origin_image = image

        origin_h, origin_w = origin_image.shape[:-1]
        # resize image and return the image with model input size and offset and scale infomation
        input_image, offset_xy, scale_xy = _image_preprocess(
            origin_image, input_shape=self.input_shape)
        input_image = np.expand_dims(input_image, 0)

        # box [[xmin, ymin, xmax, ymax]...]
        # box scores [s1, s2, s3...] 0 <= s_i <= 1
        # labels etc [c1, c2, c3 ...] 0 <= c_i <= C
        # score etc  [t1, t2, t3 ...] 0 <= t_i <= 1
        b, bc, l, ls = sess.run(
            [self._box, self._box_confidence, self._labels, self._scores],
            feed_dict={self.input_image: input_image})

        b[:, [0, 2]] = b[:, [0, 2]] - offset_xy[0]
        b[:, [1, 3]] = b[:, [1, 3]] - offset_xy[1]

        b[:, [0, 2]] = b[:, [0, 2]] / scale_xy[0]
        b[:, [1, 3]] = b[:, [1, 3]] / scale_xy[1]

        b[:, [0, 2]] = np.clip(b[:, [0, 2]], 0, origin_w - 1)
        b[:, [1, 3]] = np.clip(b[:, [1, 3]], 0, origin_h - 1)
        # nms
        _box, _box_confidence, _label, _score = _bbox_proprocess_soft(
            b, bc, l, ls, image=origin_image)

        if specific:
            return _box, _box_confidence, _label, _score
        else:
            return _box, _label, _score
Exemple #5
0
import matplotlib.pyplot as plt

from config import Config
# from model.ACM_SinGAN import SinGAN_ACM as SinGAN
from model.SinGAN import SinGAN
from utils.image import read_img, torch2np
from utils.utils import process_config, adjust_scales, calcul_sr_scale

if __name__ == '__main__':
    process_config(Config)
    Config.infer_dir = f'{Config.exp_dir}/infer_pyramid' if Config.save_all_pyramid else f'{Config.exp_dir}/infer'
    singan = SinGAN(config=Config)
    singan.load_trained_weights()

    inference_img = read_img(Config)
    os.makedirs(Config.infer_dir, exist_ok=True)
    plt.imsave(f'{Config.exp_dir}/real.png',
               torch2np(inference_img),
               vmin=0,
               vmax=1)

    if Config.mode == 'train':
        adjust_scales(inference_img, Config)
        start_img_input = singan.create_inference_input()
    elif Config.mode == 'train_SR':
        in_scale, iter_num = calcul_sr_scale(Config)
        Config.scale_factor = 1 / in_scale
        Config.scale_factor_init = 1 / in_scale
        Config.scale_w = 1
        Config.scale_h = 1
Exemple #6
0
import os
from shutil import copyfile

from config import Config
from model.SinGAN import SinGAN
from model.ACM_SinGAN import SinGAN_ACM
from utils.image import read_img
from utils.utils import process_config, adjust_scales, calcul_sr_scale

# All data : [B C H W]

if __name__ == '__main__':
    os.makedirs(Config.exp_dir, exist_ok=True)
    copyfile('config.py', f'{Config.exp_dir}/config.py')
    process_config(Config)

    train_img = read_img(Config)
    if Config.mode == "train":
        adjust_scales(train_img, Config)
    elif Config.mode == "train_SR":
        calcul_sr_scale(Config)
        adjust_scales(train_img, Config)

    singan = SinGAN_ACM(config=Config) if Config.use_acm else SinGAN(
        config=Config)
    singan.train()
Exemple #7
0
        bbox = np.array(list(map(lambda x: int(x), anno['bbox'])))
        bbox[..., 2] = bbox[..., 0] + bbox[..., 2]
        bbox[..., 3] = bbox[..., 1] + bbox[..., 3]
        img = read_img(img_path)
        print(image_id, bbox)
        draw_box(img, bbox, debug=True)


if __name__ == '__main__':
    image_dir = "/media/csh/data/coco_2017/val2017"
    anno_dir = "/media/csh/data/coco_2017/annotations/instances_val2017.json"

    with open(anno_dir) as f:
        coco_anno = json.load(f)

    for anno in coco_anno['annotations']:
        image_path = os.path.join(image_dir,
                                  "%012d" % anno['image_id']) + '.jpg'
        bbox = anno['bbox']
        break
    img = read_img(image_path)
    bbox = xywh2xymimx(bbox)
    draw_box(img, bbox, debug=True)

    # test_img = ["/media/csh/data/coco_2017/val2017/000000477118.jpg",
    #             "/media/csh/data/coco_2017/val2017/000000006818.jpg",
    #             "/media/csh/data/coco_2017/val2017/000000004765.jpg"]
    # for t_img in test_img:
    #     img = read_img(t_img)
    #     letterbox_resize(img, (416, 416), show=True)