Exemple #1
0
    def post(self):
        context = self.get_context_data()
        image = self.request.files.get('image', [None])[0]

        # form validation
        if image is None:
            message = self.add_message(
                self._("Image field is required."), 'error')
        elif not image.content_type.startswith('image/'):
            message = self.add_message(
                self._("File should be image format."), 'error')
        else:
            message = self.add_message(
                self._("Your color palette is ready."), 'success')

        # add flash notification message to context
        context['messages'].append(message)

        if message['type'] == 'success':
            image = Image(image)

            context.update()
            context.update({
                'palette': image.get_palette(),
                'image_data': image.get_image_data()
            })
            context['palette'] = image.get_palette()

        return self.render(self.template_name, **context)
Exemple #2
0
def field_conversion_method(field_image, image=None,
                            get_position_field=True):
    data = np.zeros_like(field_image.data, dtype=np.float32)

    # Matrix to go from voxel to world space
    if image is not None:
        voxel_2_xyz = image.voxel_2_mm
        vol_ext = image.vol_ext
        field = Image.from_data(data, image.get_header())
    else:
        voxel_2_xyz = field_image.voxel_2_mm
        vol_ext = field_image.vol_ext
        field = Image.from_data(data, field_image.get_header())

    voxels = np.mgrid[[slice(i) for i in vol_ext]]
    voxels = [d.reshape(vol_ext, order='F') for d in voxels]
    mms = [voxel_2_xyz[i][3] + sum(voxel_2_xyz[i][k] * voxels[k]
                                   for k in range(len(voxels)))
           for i in range(len(voxel_2_xyz) - (4 - len(vol_ext)))]

    input_data = np.squeeze(field_image.data)
    field_data = np.squeeze(data)
    mms = np.squeeze(mms)
    if get_position_field:
        for i in range(data.shape[-1]):
            # Output is the deformation/position field
            field_data[..., i] = input_data[..., i] + mms[i]
    else:
        for i in range(data.shape[-1]):
            # Output is the displacement field
            field_data[..., i] = input_data[..., i] - mms[i]

    return field
Exemple #3
0
    def _invert(image: WandImage):
        """
        Invert an image. Made for use with _invert_command.
        :param image:
        :return discord.File:
        """
        with image:
            image.negate()
            ret = image.to_discord_file(filename="inverted.png")
            b_io = image.to_bytes_io()

        return ret, b_io
def parse_json(file):
    _dirname = os.path.dirname(os.path.dirname(file))
    basename = os.path.basename(file)
    image_filename = os.path.splitext(basename)[0]
    image_path = os.path.join(_dirname, IMAGE_FOLDER, image_filename)

    image = cv2.imread(image_path)
    image_object = Image(image, filename=image_filename)

    with open(file) as f:
        info = json.load(f)
        image_object.regions = find_regions(info)
    return image_object
Exemple #5
0
    def _wasted(image: WandImage):
        """
        Add the wasted image on top of the provided image.
        :param image:
        :return:
        """
        with WandImage(filename="assets/wasted.png") as wasted:
            with image:
                wasted.resize(image.width, image.height)
                image.composite(wasted, 0, 0)
                ret = image.to_discord_file("wasted.png")
                b_io = image.to_bytes_io()

        return ret, b_io
Exemple #6
0
    def _magic(image: WandImage):
        """
        Content aware scale an image. Made for use with _magic_command.
        :param image:
        :return discord.File:
        """
        # overly content-aware-scale it
        with image:
            image.liquid_rescale(
                width=int(image.width * 0.5),
                height=int(image.height * 0.5),
                delta_x=1,
                rigidity=0
            )
            image.liquid_rescale(
                width=int(image.width * 1.5),
                height=int(image.height * 1.5),
                delta_x=2,
                rigidity=0
            )

            image.resize(256, 256)

            ret = image.to_discord_file("magik.png")
            b_io = image.to_bytes_io()

        return ret, b_io
Exemple #7
0
    def _thonk(image: WandImage):
        """
        Add the thonk hand image on top of the provided image.
        :param image:
        :return:
        """
        with WandImage(filename="assets/thonk_hand.png") as thonk:
            with image:
                thonk.resize(image.width, image.height)
                image.composite(thonk, 0, 0)
                ret = image.to_discord_file("thonk.png")
                b_io = image.to_bytes_io()

        return ret, b_io
Exemple #8
0
def run_classification(image_path: str, mode: str, user_id: str,
                       model_checkpoint_file_path: str):
    image = Image(image_path=image_path)

    try:
        image.find_iris_and_pupil()
    except ImageProcessingException:
        return RunResults.PROCESSING_FAILURE

    iris = normalize_iris(image)
    iris.pupil = image.pupil
    iris.iris = image.iris

    # Save the normalized image to a temporary file for easier use with
    # the trained network
    create_empty_dir("tmp")
    iris_hash = hashlib.sha1(image_path.encode()).hexdigest()
    iris_path = f"tmp/{iris_hash}.jpg"
    iris.save(iris_path)

    # Load trained classifier
    classifier = IrisClassifier(load_from_checkpoint=True,
                                checkpoint_file=model_checkpoint_file_path)

    # Get the classifier's prediction
    predicted_user, probability = classifier.classify_single_image(iris_path)

    if mode == Mode.IDENTIFY:
        if predicted_user == User.UNKNOWN:
            run_result = RunResults.IDENTIFICATION_FAILURE
        else:
            print(f"This image portraits user {predicted_user} "
                  f"(Prediction probability: {probability:.2%})")
            run_result = RunResults.IDENTIFICATION_SUCCESS
    else:
        if predicted_user == User.UNKNOWN:
            run_result = RunResults.VERIFICATION_FAILURE_USER_UNKNOWN
        else:
            if predicted_user == user_id:
                print(f"Successfully verified user {user_id} "
                      f"(Prediction probability: {probability:.2%})")
                run_result = RunResults.VERIFICATION_SUCCESS
            else:
                run_result = RunResults.VERIFICATION_FAILURE_USER_MISMATCH

    # Remove temporary files
    remove(iris_path)

    return run_result
def circle_available_images(image_paths: List[str], target_dir: str):
    create_empty_dir(target_dir)
    failed_count = 0

    for image_path in image_paths:
        eye_image = Image(image_path=image_path)
        user_id, sample_id = extract_user_sample_ids(image_path)
        try:
            eye_image.circle_iris_and_pupil().save(
                f"{target_dir}/{user_id}_{sample_id}.jpg"
            )
        except ImageProcessingException:
            failed_count += 1

    print(f"{failed_count} failed preprocessings")
Exemple #10
0
def initialise_field(im, affine=None):
        """
        Create a field image from the specified target image.
        Sets the data to 0.

        Parameters:
        -----------
        :param im: The target image. Mandatory.
        :param affine: The initial affine transformation
        :return: Return the created field object
        """
        vol_ext = im.vol_ext
        dims = list()
        dims.extend(vol_ext)
        while len(dims) < 4:
            dims.extend([1])
        dims.extend([len(vol_ext)])

        # Inititalise with zero
        data = np.zeros(dims, dtype=np.float32)
        field = Image.from_data(data, im.get_header())

        # We have supplied an affine transformation
        if affine is not None:
            if affine.shape != (4, 4):
                raise RegError('Input affine transformation '
                               'should be a 4x4 matrix.')
            # The updated transformation
            transform = affine * im.voxel_2_mm
            field.update_transformation(transform)

        return field
Exemple #11
0
def initialise_jacobian_field(im, affine=None):
    """
    Create a jacobian field image from the specified target image/field.
    Sets the data to 0.

    Parameters:
    -----------
    :param im: The target image/field. Mandatory.
    :param affine: The initial affine transformation
    :return: Return the created jacobian field object. Each jacobian is stored in a vector of size 9 in row major order
    """
    vol_ext = np.array(im.vol_ext)
    dims = list()
    dims.extend(vol_ext)
    while len(dims) < 4:
        dims.extend([1])
    num_dims = len(vol_ext[vol_ext>1])
    dims.extend([num_dims**2])

    # Inititalise with zero
    data = np.zeros(dims, dtype=np.float32)
    jacfield = Image.from_data(data, im.get_header())
    jacfield.set_matrix_data_attributes(num_dims, num_dims)

    # We have supplied an affine transformation
    if affine is not None:
        if affine.shape != (4, 4):
            raise RegError('Input affine transformation '
                           'should be a 4x4 matrix.')
        # The updated transformation
        transform = affine * im.voxel_2_mm
        jacfield.update_transformation(transform)

    return jacfield
Exemple #12
0
    def __init__(self):
        super().__init__()
        self.mainUI = QUiLoader().load(mainWindowPath)
        self.subUI = QUiLoader().load(subWindowPath)
        self.mainUI.setWindowTitle('EDAutopilot v2')
        # self.logger = Logger(self.mainUI.logText,toFile=True) # start logger
        self.thread_log = LogThread()
        self.logger = self.thread_log.getLogger()
        self.thread_log._logSignal.connect(self.onReceiveLog)
        self.thread_log.start()

        self.config = Config(logger=self.logger)
        if self.config.get('Main', 'log_to_file'):
            self.thread_log.initFile(
                self.config.get('Main', 'override_previous_logs'))
        self.keysDict = init_keybinds(self.logger)

        self.mainUI.actionScriptName.setDisabled(True)

        self.thread_io = IOThread(self.usingWatchdog, logger=self.logger)
        self.thread_io._ioSignal.connect(self.updateStatus)
        self.thread_io.start()

        self.image_templates = Image(logger=self.logger, config=self.config)
        self.thread_image = ImageThread(logger=self.logger)
        self.thread_image._imageSignal.connect(self.updateImage)
        self.thread_image.start()
        self.thread_script = None  # initialize in loadScript()

        self.mainUI.logText.customContextMenuRequested.connect(
            self._onRightClickLog
        )  # connect to ContextMenu in logging area (Copy, debug view, clear screen...)

        self.mainUI.actionLoadScript.triggered.connect(
            lambda: self.loadScript(None))
        self.mainUI.actionStopScript.triggered.connect(self.stopScript)
        self.mainUI.actionSettings.triggered.connect(self.onSettings)
        self.mainUI.actionAbout.triggered.connect(self.onAbout)
        self.mainUI.actionExit.triggered.connect(self.onExit)
        QApplication.instance().aboutToQuit.connect(self.onExit)

        self.mainUI.actionScriptName.setText('(Empty)')
        self.locationLabel = QLabel('Loc: None'.ljust(49))
        self.targetLabel = QLabel('Target: None'.ljust(49))
        self.alignedLabel = QLabel('Align: 0'.ljust(9))
        self.fpsLabel = QLabel('FPS: 0'.ljust(8))
        self.scriptStatusLabel = QLabel('Idle'.ljust(20))
        self.mainUI.statusBar().addWidget(self.locationLabel)
        self.mainUI.statusBar().addWidget(self.targetLabel)
        self.mainUI.statusBar().addWidget(self.alignedLabel)
        self.mainUI.statusBar().addWidget(self.fpsLabel)
        self.mainUI.statusBar().addWidget(self.scriptStatusLabel)

        self._setScriptActionsState(True)

        if self.config.get('GUI', 'load_default_on_startup'):
            defaultPath = self.config.get('GUI', 'default_script')
            if defaultPath is not None: self.loadScript(path=defaultPath)
Exemple #13
0
def on_website_crawled(response):
    global image_list
    decoded = response.body.decode('utf-8')
    # luckily re.findall is always in the same order
    links = re.findall(r'data-src="([^"]+)"', decoded)
    users = re.findall(r'\/u[^>]+>([^<]+)<\/a', decoded)
    print("Done crawling! Found {} new images. ".format(len(links)))
    for index, image in enumerate(links):
        image_list.append(Image(links[index], "image/jpeg", users[index]))

    get_next_image(image_callback)
Exemple #14
0
    def _ascii(image: WandImage, inverted: bool = False, brightness: int = 100, size: int = 62):
        """
        Converts image into an ascii art string.
        :param image: The :class WandImage: to convert to ascii.
            :param inverted: A :type bool: determining whether or not to invert.
        :param brightness: A :type int: determining the brightness.
        :param size: A :type int: determining the size.
        :return: A :type str: containing the art.
        """
        with image:
            if inverted:
                image.negate()
            if brightness is not 100:
                image.modulate(brightness=brightness)
            if size > 62:
                size = 62
            if size < 0:
                size = 2
            size = int(math.ceil(size / 2.) * 2)

            image.sample(size, int(size / 2))

            ascii_art = "```"

            for row in image:
                ascii_art += "\n"
                for col in row:
                    with Color(str(col)) as c:
                        ascii_art += c.ascii_character

            ascii_art += "```"

        return ascii_art, ascii_art
Exemple #15
0
    def exponentiate(self):
        """
        Compute the exponential of this velocity field using the
        scaling and squaring approach.

        The velocity field is in the tangent space of the manifold and the
        displacement field is the actual manifold and the transformation
        between the velocity field and the displacement field is given by
        the exponential chart.

        :param disp_image: Displacement field image that will be
        updated with the exponentiated velocity field.
        """

        self.__do_init_check()
        data = self.field.data
        result_data = np.zeros(self.field.data.shape)
        result = Image.from_data(result_data, self.field.get_header())

        # Important: Need to specify which axes to use
        norm = np.linalg.norm(data, axis=data.ndim-1)
        max_norm = np.max(norm[:])

        if max_norm < 0:
            raise ValueError('Maximum norm is invalid.')
        if max_norm == 0:
            return result

        pix_dims = np.asarray(self.field.zooms)
        # ignore NULL dimensions
        min_size = np.min(pix_dims[pix_dims > 0])
        num_steps = max(0,np.ceil(np.log2(max_norm / (min_size / 2))).astype('int'))

        # Approximate the initial exponential
        init = 1 << num_steps
        result.data = data / init

        dfc = DisplacementFieldComposer()
        # Do the squaring step to perform the integration
        # The exponential is num_steps times recursive composition of
        # the field with itself, which is equivalant to integration over
        # the unit interval.
        for _ in range(0, num_steps):
            result = dfc.compose(result, result)

        return result
Exemple #16
0
    def _expand(image: WandImage):
        """
        Expand an image using a bit of seam-carving.
        :param image:
        :return discord.File:
        """
        with image:
            image.liquid_rescale(int(image.width * 0.5), image.height)
            image.liquid_rescale(int(image.width * 3.5), image.height, delta_x=1)
            ret = image.to_discord_file("expand_dong.png")
            b_io = image.to_bytes_io()

        return ret, b_io
Exemple #17
0
    def _deepfry(image: WandImage):
        """
        Deepfry an image.
        :param image:
        :return:
        """
        with image:
            if image.format != "jpeg":
                image.format = "jpeg"
            image.compression_quality = 2
            image.modulate(saturation=700)
            ret = image.to_discord_file("deep-fry.png")
            b_io = image.to_bytes_io()

        return ret, b_io
    def build(self):
        self.log.debug("create and parse manifest")

        # fail path in case of erros
        fail_log_path = self.config.get_folder(
            "download_folder") + "/faillogs/faillog-{}.txt".format(
                self.params["request_hash"])

        self.image = Image(self.params)

        # first determine the resulting manifest hash
        return_code, manifest_content, errors = self.run_meta("manifest")

        if return_code == 0:
            self.image.params["manifest_hash"] = get_hash(manifest_content, 15)

            manifest_pattern = r"(.+) - (.+)\n"
            manifest_packages = dict(
                re.findall(manifest_pattern, manifest_content))
            self.database.add_manifest_packages(
                self.image.params["manifest_hash"], manifest_packages)
            self.log.info("successfully parsed manifest")
        else:
            self.log.error("couldn't determine manifest")
            self.write_log(fail_log_path, stderr=errors)
            self.database.set_image_requests_status(
                self.params["request_hash"], "manifest_fail")
            return False

        # set directory where image is stored on server
        self.image.set_image_dir()
        self.log.debug("dir %s", self.image.params["dir"])

        # calculate hash based on resulted manifest
        self.image.params["image_hash"] = get_hash(
            " ".join(self.image.as_array("manifest_hash")), 15)

        # set log path in case of success
        success_log_path = self.image.params[
            "dir"] + "/buildlog-{}.txt".format(self.params["image_hash"])

        # set build_status ahead, if stuff goes wrong it will be changed
        self.build_status = "created"

        # check if image already exists
        if not self.image.created():
            self.log.info("build image")
            with tempfile.TemporaryDirectory(
                    dir=self.config.get_folder("tempdir")) as build_dir:
                # now actually build the image with manifest hash as EXTRA_IMAGE_NAME
                self.params["worker"] = self.location
                self.params["BIN_DIR"] = build_dir
                self.params["j"] = str(os.cpu_count())
                self.params["EXTRA_IMAGE_NAME"] = self.params["manifest_hash"]
                # if uci defaults are added, at least at parts of the hash to time image name
                if self.params["defaults_hash"]:
                    defaults_dir = build_dir + "/files/etc/uci-defaults/"
                    # create folder to store uci defaults
                    os.makedirs(defaults_dir)
                    # request defaults content from database
                    defaults_content = self.database.get_defaults(
                        self.params["defaults_hash"])
                    with open(defaults_dir + "99-server-defaults",
                              "w") as defaults_file:
                        defaults_file.write(
                            defaults_content
                        )  # TODO check if special encoding is required

                    # tell ImageBuilder to integrate files
                    self.params["FILES"] = build_dir + "/files/"
                    self.params["EXTRA_IMAGE_NAME"] += "-" + self.params[
                        "defaults_hash"][:6]

                # download is already performed for manifest creation
                self.params["NO_DOWNLOAD"] = "1"

                build_start = time.time()
                return_code, buildlog, errors = self.run_meta("image")
                self.image.params["build_seconds"] = int(time.time() -
                                                         build_start)

                if return_code == 0:
                    # create folder in advance
                    os.makedirs(self.image.params["dir"], exist_ok=True)

                    self.log.debug(os.listdir(build_dir))

                    for filename in os.listdir(build_dir):
                        if os.path.exists(self.image.params["dir"] + "/" +
                                          filename):
                            break
                        shutil.move(build_dir + "/" + filename,
                                    self.image.params["dir"])

                    # possible sysupgrade names, ordered by likeliness
                    possible_sysupgrade_files = [
                        "*-squashfs-sysupgrade.bin",
                        "*-squashfs-sysupgrade.tar", "*-squashfs.trx",
                        "*-squashfs.chk", "*-squashfs.bin",
                        "*-squashfs-sdcard.img.gz", "*-combined-squashfs*",
                        "*.img.gz"
                    ]

                    sysupgrade = None

                    for sysupgrade_file in possible_sysupgrade_files:
                        sysupgrade = glob.glob(self.image.params["dir"] + "/" +
                                               sysupgrade_file)
                        if sysupgrade:
                            break

                    if not sysupgrade:
                        self.log.debug("sysupgrade not found")
                        if buildlog.find("too big") != -1:
                            self.log.warning("created image was to big")
                            self.database.set_image_requests_status(
                                self.params["request_hash"], "imagesize_fail")
                            self.write_log(fail_log_path, buildlog, errors)
                            return False
                        else:
                            self.build_status = "no_sysupgrade"
                            self.image.params["sysupgrade"] = ""
                    else:
                        self.image.params["sysupgrade"] = os.path.basename(
                            sysupgrade[0])

                    self.write_log(success_log_path, buildlog)
                    self.database.add_image(self.image.get_params())
                    self.log.info("build successfull")
                else:
                    self.log.info("build failed")
                    self.database.set_image_requests_status(
                        self.params["request_hash"], 'build_fail')
                    self.write_log(fail_log_path, buildlog, errors)
                    return False

        self.log.info("link request %s to image %s",
                      self.params["request_hash"], self.params["image_hash"])
        self.database.done_build_job(self.params["request_hash"],
                                     self.image.params["image_hash"],
                                     self.build_status)
        return True
class Worker(threading.Thread):
    def __init__(self, location, job, queue):
        self.location = location
        self.queue = queue
        self.job = job
        threading.Thread.__init__(self)
        self.log = logging.getLogger(__name__)
        self.log.info("log initialized")
        self.config = Config()
        self.log.info("config initialized")
        self.database = Database(self.config)
        self.log.info("database initialized")

    def setup_meta(self):
        self.log.debug("setup meta")
        os.makedirs(self.location, exist_ok=True)
        if not os.path.exists(self.location + "/meta"):
            cmdline = "git clone https://github.com/aparcar/meta-imagebuilder.git ."
            proc = subprocess.Popen(
                cmdline.split(" "),
                cwd=self.location,
                stdout=subprocess.PIPE,
                shell=False,
            )

            _, errors = proc.communicate()
            return_code = proc.returncode

            if return_code != 0:
                self.log.error("failed to setup meta ImageBuilder")
                exit()

        self.log.info("meta ImageBuilder successfully setup")

    def write_log(self, path, stdout=None, stderr=None):
        with open(path, "a") as log_file:
            log_file.write("### BUILD COMMAND:\n\n")
            for key, value in self.params.items():
                log_file.write("{}={}\n".format(key.upper(), str(value)))
            log_file.write("sh meta\n")
            if stdout:
                log_file.write("\n\n### STDOUT:\n\n" + stdout)
            if stderr:
                log_file.write("\n\n### STDERR:\n\n" + stderr)

    # build image
    def build(self):
        self.log.debug("create and parse manifest")

        # fail path in case of erros
        fail_log_path = self.config.get_folder(
            "download_folder") + "/faillogs/faillog-{}.txt".format(
                self.params["request_hash"])

        self.image = Image(self.params)

        # first determine the resulting manifest hash
        return_code, manifest_content, errors = self.run_meta("manifest")

        if return_code == 0:
            self.image.params["manifest_hash"] = get_hash(manifest_content, 15)

            manifest_pattern = r"(.+) - (.+)\n"
            manifest_packages = dict(
                re.findall(manifest_pattern, manifest_content))
            self.database.add_manifest_packages(
                self.image.params["manifest_hash"], manifest_packages)
            self.log.info("successfully parsed manifest")
        else:
            self.log.error("couldn't determine manifest")
            self.write_log(fail_log_path, stderr=errors)
            self.database.set_image_requests_status(
                self.params["request_hash"], "manifest_fail")
            return False

        # set directory where image is stored on server
        self.image.set_image_dir()
        self.log.debug("dir %s", self.image.params["dir"])

        # calculate hash based on resulted manifest
        self.image.params["image_hash"] = get_hash(
            " ".join(self.image.as_array("manifest_hash")), 15)

        # set log path in case of success
        success_log_path = self.image.params[
            "dir"] + "/buildlog-{}.txt".format(self.params["image_hash"])

        # set build_status ahead, if stuff goes wrong it will be changed
        self.build_status = "created"

        # check if image already exists
        if not self.image.created():
            self.log.info("build image")
            with tempfile.TemporaryDirectory(
                    dir=self.config.get_folder("tempdir")) as build_dir:
                # now actually build the image with manifest hash as EXTRA_IMAGE_NAME
                self.params["worker"] = self.location
                self.params["BIN_DIR"] = build_dir
                self.params["j"] = str(os.cpu_count())
                self.params["EXTRA_IMAGE_NAME"] = self.params["manifest_hash"]
                # if uci defaults are added, at least at parts of the hash to time image name
                if self.params["defaults_hash"]:
                    defaults_dir = build_dir + "/files/etc/uci-defaults/"
                    # create folder to store uci defaults
                    os.makedirs(defaults_dir)
                    # request defaults content from database
                    defaults_content = self.database.get_defaults(
                        self.params["defaults_hash"])
                    with open(defaults_dir + "99-server-defaults",
                              "w") as defaults_file:
                        defaults_file.write(
                            defaults_content
                        )  # TODO check if special encoding is required

                    # tell ImageBuilder to integrate files
                    self.params["FILES"] = build_dir + "/files/"
                    self.params["EXTRA_IMAGE_NAME"] += "-" + self.params[
                        "defaults_hash"][:6]

                # download is already performed for manifest creation
                self.params["NO_DOWNLOAD"] = "1"

                build_start = time.time()
                return_code, buildlog, errors = self.run_meta("image")
                self.image.params["build_seconds"] = int(time.time() -
                                                         build_start)

                if return_code == 0:
                    # create folder in advance
                    os.makedirs(self.image.params["dir"], exist_ok=True)

                    self.log.debug(os.listdir(build_dir))

                    for filename in os.listdir(build_dir):
                        if os.path.exists(self.image.params["dir"] + "/" +
                                          filename):
                            break
                        shutil.move(build_dir + "/" + filename,
                                    self.image.params["dir"])

                    # possible sysupgrade names, ordered by likeliness
                    possible_sysupgrade_files = [
                        "*-squashfs-sysupgrade.bin",
                        "*-squashfs-sysupgrade.tar", "*-squashfs.trx",
                        "*-squashfs.chk", "*-squashfs.bin",
                        "*-squashfs-sdcard.img.gz", "*-combined-squashfs*",
                        "*.img.gz"
                    ]

                    sysupgrade = None

                    for sysupgrade_file in possible_sysupgrade_files:
                        sysupgrade = glob.glob(self.image.params["dir"] + "/" +
                                               sysupgrade_file)
                        if sysupgrade:
                            break

                    if not sysupgrade:
                        self.log.debug("sysupgrade not found")
                        if buildlog.find("too big") != -1:
                            self.log.warning("created image was to big")
                            self.database.set_image_requests_status(
                                self.params["request_hash"], "imagesize_fail")
                            self.write_log(fail_log_path, buildlog, errors)
                            return False
                        else:
                            self.build_status = "no_sysupgrade"
                            self.image.params["sysupgrade"] = ""
                    else:
                        self.image.params["sysupgrade"] = os.path.basename(
                            sysupgrade[0])

                    self.write_log(success_log_path, buildlog)
                    self.database.add_image(self.image.get_params())
                    self.log.info("build successfull")
                else:
                    self.log.info("build failed")
                    self.database.set_image_requests_status(
                        self.params["request_hash"], 'build_fail')
                    self.write_log(fail_log_path, buildlog, errors)
                    return False

        self.log.info("link request %s to image %s",
                      self.params["request_hash"], self.params["image_hash"])
        self.database.done_build_job(self.params["request_hash"],
                                     self.image.params["image_hash"],
                                     self.build_status)
        return True

    def run(self):
        self.setup_meta()

        while True:
            self.params = self.queue.get()
            self.version_config = self.config.version(self.params["distro"],
                                                      self.params["version"])
            if self.job == "image":
                self.build()
            elif self.job == "update":
                self.info()
                self.parse_packages()

    def info(self):
        self.parse_info()
        if os.path.exists(
                os.path.join(self.location, "imagebuilder",
                             self.params["distro"], self.params["version"],
                             self.params["target"], self.params["subtarget"],
                             "target/linux", self.params["target"],
                             "base-files/lib/upgrade/platform.sh")):
            self.log.info("%s target is supported", self.params["target"])
            self.database.insert_supported(self.params)

    def run_meta(self, cmd):
        cmdline = ["sh", "meta", cmd]
        env = os.environ.copy()

        if "parent_version" in self.version_config:
            self.params["IB_VERSION"] = self.version_config["parent_version"]
        if "repos" in self.version_config:
            self.params["REPOS"] = self.version_config["repos"]

        for key, value in self.params.items():
            env[key.upper()] = str(
                value)  # TODO convert meta script to Makefile

        proc = subprocess.Popen(cmdline,
                                cwd=self.location,
                                stdout=subprocess.PIPE,
                                stderr=subprocess.PIPE,
                                shell=False,
                                env=env)

        output, errors = proc.communicate()
        return_code = proc.returncode
        output = output.decode('utf-8')
        errors = errors.decode('utf-8')

        return (return_code, output, errors)

    def parse_info(self):
        self.log.debug("parse info")

        return_code, output, errors = self.run_meta("info")

        if return_code == 0:
            default_packages_pattern = r"(.*\n)*Default Packages: (.+)\n"
            default_packages = re.match(default_packages_pattern, output,
                                        re.M).group(2)
            logging.debug("default packages: %s", default_packages)

            profiles_pattern = r"(.+):\n    (.+)\n    Packages: (.*)\n"
            profiles = re.findall(profiles_pattern, output)
            if not profiles:
                profiles = []
            self.database.insert_profiles(
                {
                    "distro": self.params["distro"],
                    "version": self.params["version"],
                    "target": self.params["target"],
                    "subtarget": self.params["subtarget"]
                }, default_packages, profiles)
        else:
            logging.error("could not receive profiles")
            return False

    def parse_packages(self):
        self.log.info("receive packages")

        return_code, output, errors = self.run_meta("package_list")

        if return_code == 0:
            packages = re.findall(r"(.+?) - (.+?) - .*\n", output)
            self.log.info("found {} packages".format(len(packages)))
            self.database.insert_packages_available(
                {
                    "distro": self.params["distro"],
                    "version": self.params["version"],
                    "target": self.params["target"],
                    "subtarget": self.params["subtarget"]
                }, packages)
        else:
            self.log.warning("could not receive packages")
Exemple #20
0
                img.save(image_path)

                if save_reference:
                    image_path = image_path[:-4] + '_reference' + extension

                    if not os.path.exists(image_path):
                        img_float = img_as_float(img)

                        if image_source == 'google':  # remove alpha channel
                            img_new = np.zeros((len(img_float), len(img_float[0]), 3))
                            for r in range(0, len(img_float)):
                                for c in range(0, len(img_float[0])):
                                    img_new[r][c] = img_float[r][c][:3]
                            img_float = img_new

                        image = Image(img_float)

                        for pixel in road.pixels(size, zoom_level):
                            image.mark_pixel(pixel, radius=2)

                        img = im.fromarray((image.get() * 255).astype(np.uint8))
                        img.save(image_path)

        i = 0
        for segment in segments:
            i += 1
            image_path = path_images + name + '_' + str(i) + '_z' + str(zoom_level) + '_s' + str(size) + extension

            if not os.path.exists(image_path):
                mpp = meter_per_pixel(segment.center().lat, zoom_level)
                reference = segment.pixels(size, zoom_level=zoom_level)
def split_system_users(circled_images_dir: str = CIRCLED_DATA_DIR,
                       original_images_dir: str = ORIGINAL_DATA_DIR,
                       system_database_dir: str = SYSTEM_DATABASE_DIR,
                       normalized_images_dir: str = NORMALIZED_DATA_DIR,
                       number_of_users_wanted: int = 100,
                       normalized_image_width: int = NORMALIZED_IMAGE_WIDTH,
                       normalized_image_height: int = NORMALIZED_IMAGE_HEIGHT,
                       random_state: int = 1):
    """
    Divide selected users into "registered", which will be known to the system,

    and "unknown", which should be rejected upon identification.
    Move their input images into their respective data/system_database folders.

    Additionally, split "registered" user photos into train and val subsets
    and save them into data/tmp/normalized.
    """
    circled_images_paths = sorted(glob(f"{circled_images_dir}/*"))
    top_users_ids = _find_users_with_most_photos(circled_images_paths,
                                                 number_of_users_wanted)
    # Filter out unnecessary images
    top_users_image_paths = [
        path for path in circled_images_paths
        if extract_user_sample_ids(path)[0] in top_users_ids
    ]

    # Shuffle IDs
    random.seed(random_state)
    random.shuffle(top_users_ids)

    # Split users into "registered" and "unknown"
    split_idx = number_of_users_wanted // 2
    registered_ids = top_users_ids[:split_idx]

    registered_dir = f"{system_database_dir}/registered_users"
    unknown_dir = f"{system_database_dir}/unknown_users"

    create_empty_dir(normalized_images_dir)
    create_empty_dir(registered_dir)
    create_empty_dir(unknown_dir)

    for image_path in tqdm(top_users_image_paths,
                           desc="Copying irides images"):
        user_id, _ = extract_user_sample_ids(image_path)

        is_registered = user_id in registered_ids
        target_dir = registered_dir if is_registered else unknown_dir

        file_name = get_file_name(image_path)
        original_image_path = f"{original_images_dir}/{file_name}"

        # Save original image to data/system_database
        copyfile(original_image_path, f"{target_dir}/{file_name}")

        if is_registered:
            eye_image = Image(image_path=original_image_path)
            eye_image.find_iris_and_pupil()
            normalized = normalize_iris(
                eye_image,
                output_height=normalized_image_height,
                output_width=normalized_image_width
            )

            normalized.save(f"{normalized_images_dir}/{file_name}")
def normalize_iris(image: Image,
                   output_height: int = NORMALIZED_IMAGE_HEIGHT,
                   output_width: int = NORMALIZED_IMAGE_WIDTH) -> Image:
    """
    Normalize iris region by unwrapping the circular region into a rectangular
    block of constant dimensions.
    Source: https://github.com/thuyngch/Iris-Recognition/

    :param image: Input iris image
    :param output_height: Radial resolution (vertical dimension)
    :param output_width: Angular resolution (horizontal dimension)

    :return image: Normalized form of the iris region
    """
    radius_pixels = output_height + 2
    angle_divisions = output_width - 1

    theta = np.linspace(0, 2 * np.pi, angle_divisions + 1)

    # Calculate displacement of pupil center from the iris center
    ox = image.pupil.center_x - image.iris.center_x
    oy = image.pupil.center_y - image.iris.center_y

    sgn = -1 if ox <= 0 else 1

    if ox == 0 and oy > 0:
        sgn = 1

    a = np.ones(angle_divisions + 1) * (ox ** 2 + oy ** 2)

    # Need to do something for ox = 0
    if ox == 0:
        phi = np.pi / 2
    else:
        phi = np.arctan(oy / ox)

    b = sgn * np.cos(np.pi - phi - theta)

    # Calculate radius around the iris as a function of the angle
    r = np.sqrt(a) * b + np.sqrt(a * b ** 2 - (a - image.iris.radius ** 2))
    r = np.array([r - image.pupil.radius])

    r_mat = np.dot(np.ones([radius_pixels, 1]), r)

    r_mat = r_mat * np.dot(np.ones([angle_divisions + 1, 1]),
                           np.array([
                               np.linspace(0, 1, radius_pixels)
                           ])).transpose()
    r_mat = r_mat + image.pupil.radius

    # Exclude values at the boundary of the pupil iris border,
    # and the iris scelra border as these may not correspond to areas
    # in the iris region and will introduce noise.
    # ie don't take the outside rings as iris data.
    r_mat = r_mat[1: radius_pixels - 1, :]

    # Calculate cartesian location of each data point around
    # the circular iris region
    x_cos_mat = np.dot(np.ones([radius_pixels - 2, 1]),
                       np.array([np.cos(theta)]))
    x_sin_mat = np.dot(np.ones([radius_pixels - 2, 1]),
                       np.array([np.sin(theta)]))

    xo = r_mat * x_cos_mat
    yo = r_mat * x_sin_mat

    xo = image.pupil.center_x + xo
    xo = np.round(xo).astype(int)
    coords = np.where(xo >= image.shape[1])
    xo[coords] = image.shape[1] - 1
    coords = np.where(xo < 0)
    xo[coords] = 0

    yo = image.pupil.center_y - yo
    yo = np.round(yo).astype(int)
    coords = np.where(yo >= image.shape[0])
    yo[coords] = image.shape[0] - 1
    coords = np.where(yo < 0)
    yo[coords] = 0

    polar_array = image.img[yo, xo]
    polar_array = polar_array / 255

    # Get rid of outlying points in order to write out the circular pattern
    image.img[yo, xo] = 255

    # Get pixel coords for circle around iris
    x, y = image.iris.find_circle_coordinates(image.shape)
    image.img[y, x] = 255

    # Get pixel coords for circle around pupil
    xp, yp = image.pupil.find_circle_coordinates(image.shape)
    image.img[yp, xp] = 255

    # Replace NaNs before performing feature encoding
    coords = np.where((np.isnan(polar_array)))
    polar_array2 = polar_array
    polar_array2[coords] = 0.5
    avg = np.sum(polar_array2) / (polar_array.shape[0] * polar_array.shape[1])
    polar_array[coords] = avg

    return Image((polar_array * 255).astype(np.uint8))
    def _process_request(self):
        self.log.debug("request_json: %s", self.request_json)

        # if request_hash is available check the database directly
        if "request_hash" in self.request_json:
            self.request = self.database.check_build_request_hash(
                self.request_json["request_hash"])

            if not self.request:
                self.response_status = HTTPStatus.NOT_FOUND
                return self.respond()
            else:
                return self.return_status()
        else:
            # required params for a build request
            missing_params = self.check_missing_params(
                ["distro", "version", "target", "subtarget", "board"])
            if missing_params:
                return self.respond()

        self.request_json["profile"] = self.request_json[
            "board"]  # TODO fix this workaround

        if "defaults" in self.request_json:
            # check if the uci file exceeds the max file size. this should be
            # done as the uci-defaults are at least temporary stored in the
            # database to be passed to a worker
            if getsizeof(self.request_json["defaults"]) > self.config.get(
                    "max_defaults_size"):
                self.response_json[
                    "error"] = "attached defaults exceed max size"
                self.response_status = 420  # this error code is the best I could find
                self.respond()

        # create image object to get the request_hash
        image = Image(self.request_json)
        image.set_packages_hash()
        request_hash = get_hash(" ".join(image.as_array("packages_hash")), 12)
        request_database = self.database.check_build_request_hash(request_hash)

        # if found return instantly the status
        if request_database:
            self.log.debug("found image in database: %s",
                           request_database["status"])
            self.request = request_database
            return self.return_status()
        else:
            self.request["request_hash"] = request_hash

        self.request["packages_hash"] = image.params[
            "packages_hash"]  # TODO make this better

        # if not perform various checks to see if the request is acutally valid
        # check for valid distro and version
        bad_request = self.check_bad_request()
        if bad_request:
            return bad_request

        # check for valid target and subtarget
        bad_target = self.check_bad_target()
        if bad_target:
            return bad_target

        # check for existing packages
        bad_packages = self.check_bad_packages()
        if bad_packages:
            return bad_packages

        # add package_hash to database
        self.database.insert_packages_hash(self.request["packages_hash"],
                                           self.request["packages"])

        # now some heavy guess work is done to figure out the profile
        # eventually this could be simplified if upstream unifirm the profiles/boards
        if "board" in self.request_json:
            self.log.debug("board in request, search for %s",
                           self.request_json["board"])
            self.request["profile"] = self.database.check_profile(
                self.request["distro"], self.request["version"],
                self.request["target"], self.request["subtarget"],
                self.request_json["board"])

        if not self.request["profile"]:
            if "model" in self.request_json:
                self.log.debug("model in request, search for %s",
                               self.request_json["model"])
                self.request["profile"] = self.database.check_model(
                    self.request["distro"], self.request["version"],
                    self.request["target"], self.request["subtarget"],
                    self.request_json["model"])
                self.log.debug("model search found profile %s",
                               self.request["profile"])

        if not self.request["profile"]:
            if self.database.check_profile(self.request["distro"],
                                           self.request["version"],
                                           self.request["target"],
                                           self.request["subtarget"],
                                           "Generic"):
                self.request["profile"] = "Generic"
            elif self.database.check_profile(self.request["distro"],
                                             self.request["version"],
                                             self.request["target"],
                                             self.request["subtarget"],
                                             "generic"):
                self.request["profile"] = "generic"
            else:
                self.response_json[
                    "error"] = "unknown device, please check model and board params"
                self.response_status = HTTPStatus.PRECONDITION_FAILED  # 412
                return self.respond()

        self.request["defaults_hash"] = image.params["defaults_hash"]
        # check if a default uci config is attached to the request
        if image.params["defaults_hash"] != "":
            self.database.insert_defaults(image.params["defaults_hash"],
                                          self.request_json["defaults"])

        # all checks passed, eventually add to queue!
        self.request.pop("packages")
        self.log.debug("add build job %s", self.request)
        self.database.add_build_job(self.request)
        return self.return_queued()
Exemple #24
0
def generate_random_smooth_deformation(volume_size,
                                       max_deformation=3,
                                       sigma=1):
    """
    Generate a random smooth deformation
    param: def_image: Deformation field image. It will be updated with the deformation.
    max_deformation_in_voxels: Maximum amount of deformation in voxels.

    The method ensures that the jacobian determinant of the deformation is positive.
    """
    if sigma <= 0:
        sigma = max_deformation/3

    if len(volume_size) > 3:
        volume_size = volume_size[0:3]

    dims = list()
    dims.extend(volume_size)
    while len(dims) < 4:
        dims.extend([1])
    dims.extend([len(volume_size)])

    # Inititalise with zero
    data = np.zeros(dims, dtype=np.float32)
    def_field = Image.generate_default_image_from_data(data)
    generate_identity_deformation(def_field)
    # Generate a random displacement field
    displacement = max_deformation * 2 * \
        (np.random.random_sample(def_field.data.shape) - 0.5)
    # Smooth the displacement field
    for i in range(0, displacement.shape[4]):
        displacement[:,:,:,0,i] = ndimage.filters.gaussian_filter(displacement[:,:,:,0,i], sigma=sigma)

    disp_s = def_field.data.squeeze() + displacement.squeeze()
    done = False
    while not done:
        if len(volume_size) == 2:
            grad = np.gradient(disp_s[..., 0])
            x_x = grad[0]
            x_y = grad[1]
            grad = np.gradient(disp_s[..., 1])
            y_x = grad[0]
            y_y = grad[1]

            jac_det = x_x * y_y - x_y * y_x

            if np.min(jac_det) < 0.1:
                for i in range(0, displacement.shape[4]):
                    displacement[:,:,:,0,i] = ndimage.filters.gaussian_filter(displacement[:,:,:,0,i], sigma=sigma)
                disp_s = def_field.data.squeeze() + displacement.squeeze()
            else:
                done = True
        else:
            grad = np.gradient(disp_s[..., 0])
            x_x = grad[0]
            x_y = grad[1]
            x_z = grad[2]
            grad = np.gradient(disp_s[..., 1])
            y_x = grad[0]
            y_y = grad[1]
            y_z = grad[2]
            grad = np.gradient(disp_s[..., 2])
            z_x = grad[0]
            z_y = grad[1]
            z_z = grad[2]

            jac_det = x_x * (y_y*z_z - y_z*z_y) - \
                x_y * (y_x*z_z - y_z*z_x) + x_z * (y_x*z_y - y_y*z_x)

            if np.min(jac_det) < 0.1:
                for i in range(0, displacement.shape[4]):
                    displacement[:,:,:,0,i] = ndimage.filters.gaussian_filter(displacement[:,:,:,0,i], sigma=sigma)
                disp_s = def_field.data.squeeze() + displacement.squeeze()
            else:
                done = True

    def_field.data += displacement
    return def_field
Exemple #25
0
            # os.remove(image_path)
            # print('Test sample removed')
            continue

        node_tuples = []
        for n in range(index_start, index_goal + 1):
            node_tuples.append((nodes[n].lat, nodes[n].lon))

        node_tuples_set = set(node_tuples)
        if len(node_tuples_set) < len(node_tuples):
            print_abort('road segment contains a loop')
            # os.remove(image_path)
            # print('Test sample removed')
            continue

        image = Image(img)
        img_ref = np.matrix.copy(img)

        if save_init:
            image.mark_pixel(start, radius=5.5)
            image.mark_pixel(goal, radius=5.5)
            result = PILImage.fromarray((image.get() * 255).astype(np.uint8))
            result.save(image_path[:-4] + '_init' + extension)
            continue

        if straight_line_baseline:
            start_time = time.time()
            extraction = fill([], start, goal)
            smoothed_extraction = extraction
            cost_map = np.zeros((len(img), len(img[0])))
            total_extraction_time += time.time() - start_time
Exemple #26
0
plt.subplots_adjust(left=0, right=1, top=0.99, bottom=0.01)
ax = plt.gca()
implot = ax.imshow(img_marked, interpolation='kaiser')
fig = plt.gcf()
cid = fig.canvas.mpl_connect('button_press_event', onclick)
fm = plt.get_current_fig_manager()
# only works for TkAgg backend
fm.window.state('zoomed')
plt.show()

start = input[0][0], input[0][1]
goal = input[1][0], input[1][1]
smoothed_extraction, points, extraction, cost_map = extract_road(
    img, start, goal)

image = Image(img)

costs_extraction = []
for pixel in extraction:
    costs_extraction.append((pixel, cost_map[pixel[1]][pixel[0]]))
    # cost = cost_map[pixel[1]][pixel[0]]
    # color = map_to_color(cost, 0, 1)
    # image.mark_pixel(pixel, color, radius=1.5)
    # image.mark_pixel(pixel, (1, 0, 0), radius=1.5)

xe = [item[0][0] for item in costs_extraction]
ye = [item[0][1] for item in costs_extraction]
ce = [item[1] for item in costs_extraction]

costs_smoothed_extraction = []
for pixel in smoothed_extraction: