def parse_function(data, config): features = tf.parse_single_example(data, features={ 'image': tf.FixedLenFeature([], tf.string), 'shape': tf.FixedLenFeature([], tf.string), 'label': tf.FixedLenFeature([], tf.int64) }) shape = tf.decode_raw(features['shape'], tf.int32) label = tf.cast(features['label'], tf.int64) shape = tf.reshape(shape, [3]) images = tf.image.decode_jpeg(features['image'], channels=3) images = tf.cast(tf.reshape(images, shape), tf.float32) images = image_augmentor(image=images, input_shape=shape, **config) return images, label, # shape
def parse_function(data, config): features = tf.parse_single_example(data, features={ 'image': tf.FixedLenFeature([], tf.string), 'shape': tf.FixedLenFeature([], tf.string), 'ground_truth': tf.FixedLenFeature([], tf.string) }) shape = tf.decode_raw(features['shape'], tf.int32) ground_truth = tf.decode_raw(features['ground_truth'], tf.float32) shape = tf.reshape(shape, [3]) ground_truth = tf.reshape(ground_truth, [-1, 5]) images = tf.image.decode_jpeg(features['image'], channels=3) images = tf.cast(tf.reshape(images, shape), tf.float32) images, ground_truth = image_augmentor(image=images, input_shape=shape, ground_truth=ground_truth, **config) return images, ground_truth
def parse_function(data, config): features = tf.io.parse_single_example( data, features={ # 产生一个实例 'image': tf.io.FixedLenFeature([], tf.string), 'shape': tf.io.FixedLenFeature([], tf.string), 'ground_truth': tf.io.FixedLenFeature([], tf.string) }) shape = tf.decode_raw(features['shape'], tf.int32) # tf.decode_raw:主要用于将原来编码为字符串的类型变回来 ground_truth = tf.decode_raw(features['ground_truth'], tf.float32) shape = tf.reshape(shape, [3]) ground_truth = tf.reshape(ground_truth, [-1, 5]) # 这个框的标注对应于5个内容 images = tf.image.decode_jpeg(features['image'], channels=3) # channel=3为RGB图片 images = tf.cast(tf.reshape(images, shape), tf.float32) images, ground_truth = image_augmentor(image=images, input_shape=shape, ground_truth=ground_truth, **config) return images, ground_truth