Exemple #1
0
    def _validate_(self):
        with torch.no_grad():
            print ("val ,"*8,"warm start...",len(self.dt_val_warm))
            iter_start_time = time.time()
            ssim = []
            batch_loss = []
            psnr = []

            cub_ssim = []
            cub_batch_loss = []
            cub_psnr = []


            save_image_list_1 = []

            for ii,data   in  tqdm.tqdm( enumerate(self.dt_val_warm) ):
                if len(data)>3:
                    input_lr ,input_hr , cubic_hr,_,_ =data
                else :
                    input_lr ,input_hr , cubic_hr =data

                self. input_lr = input_lr .to(self.device)
                self. input_hr = input_hr .to(self.device)
                self. input_cubic_hr = cubic_hr .to(self.device)

                self.forward()

                save_image_list_1.append(torch.cat( [self.input_cubic_hr ,\
                 self.output_hr ,\
                 self.input_hr ],dim=3)  )

                loss = self.critic_pixel(self.output_hr, self.input_hr)
                batch_loss.append(loss.item())
                ssim.append(image_quality.msssim(self.output_hr, self.input_hr).item())
                psnr.append(image_quality.psnr( self.output_hr, self.input_hr ).item())

                cub_loss = self.critic_pixel( self.input_cubic_hr , self.input_hr)
                cub_batch_loss.append(cub_loss.item())
                cub_ssim.append(image_quality.msssim(self.input_cubic_hr, self.input_hr).item())
                cub_psnr.append(image_quality.psnr( self.input_cubic_hr, self.input_hr ).item())

            np.random.shuffle(save_image_list_1)
            save_image_list= save_image_list_1[:8]
            save_image_list = util.tensor2im( torch.cat(save_image_list,dim=2) )
            save_image_list = OrderedDict([ ("cub_out_gt", save_image_list )] ) 
            self.visualizer.display_current_results(save_image_list,self.epoch, save_result=True, offset=20,title="val_imag")

            val_info = ( np.mean(batch_loss),np.mean(ssim),np.mean(psnr) ,np.mean(cub_batch_loss) , np.mean(cub_ssim) ,np.mean(cub_psnr))
            errors = dict(zip ( ("loss","ssim","psnr","cub_loss","cub_ssim","cub_psnr") , val_info ) ) 
            t = (time.time() - iter_start_time) 
            self.visualizer.print_current_errors(self.epoch , self.epoch, errors, t,log_name="loss_log_val.txt")
            self.visualizer.plot_current_errors(self.epoch , self.epoch,opt=None,errors=errors,display_id_offset=3,loss_name="val")

            return val_info
Exemple #2
0
DCSCN_12 = "model_check_points/DCSCN/DCSCN_model_387epos_L12_noise_1.pt"
model_dcscn = torch.load(DCSCN_12)

model_upconv7 = UpConv_7()
model_upconv7.load_pre_train_weights("model_check_points/Upconv_7/anime/noise0_scale2.0x_model.json")

img_dataset = ImageData(img_folder='demo/demo_imgs/',
                        max_patch_per_img=1000,
                        patch_size=96,
                        shrink_size=2,
                        noise_level=1,
                        down_sample_method=Image.BICUBIC,
                        color_mod='RGB')

img_data = ImageLoader(img_dataset,
                       up_sample=None,
                       batch_size=1,
                       shuffle=True,
                       pad_img=model_upconv7.offset)  # DCSCN must set pad_img = 0
ssim_score = []
psnr_score = []
for img in tqdm(img_data, ascii=True):
    lr, hr = img
    out = model_upconv7.forward_checkpoint(lr)
    psnr_score.append(image_quality.calc_psnr(out, hr))
    ssim_score.append(image_quality.msssim(out, hr))

print("Averge PSNR score: {:.4f}".format(np.mean(psnr_score)))
print("Average MS-SSIM score: {:.4f}".format(np.mean(ssim_score)))
Exemple #3
0
    batch_loss = []
    insample_ssim = 0
    for index, batch in enumerate(img_data):
        lr_img, hr_img = batch
        model.zero_grad()

        outputs = model.forward(lr_img)
        loss = criteria(outputs, hr_img)
        loss.backward()
        nn.utils.clip_grad_norm_(model.parameters(), 5)
        optimizer.step()

        counter += 1
        all_loss.append(loss.item())
        batch_loss.append(loss.item())
        ssim = image_quality.msssim(outputs, hr_img)
        ibar.set_postfix(ratio=index / total_batch,
                         loss=loss.item(),
                         ssim=ssim,
                         batch=index)
        insample_ssim += ssim

    one_ite_loss = np.mean(batch_loss)
    print("One iteration loss {:.5f}".format(one_ite_loss))

    # eval
    ssim = 0
    for test_batch in test_data:
        lr_img, hr_img
        lr_img_up = model.forward_checkpoint(lr_img)
        ssim += image_quality.msssim(lr_img_up, hr_img)
Exemple #4
0
        hr_img = hr_img.cuda()

        # model.zero_grad()
        optimizer.zero_grad()
        outputs = model.forward(lr_img)
        outputs = outputs.float()
        loss = criteria(outputs, hr_img)
        # loss.backward()
        optimizer.backward(loss)
        # nn.utils.clip_grad_norm_(model.parameters(), 5)
        optimizer.step()

        counter += 1
        # train_loss.append(loss.item())

        ssim = image_quality.msssim(outputs, hr_img).item()
        psnr = image_quality.psnr(outputs, hr_img).item()

        ibar.set_postfix(ratio=index / total_batch,
                         loss=loss.item(),
                         ssim=ssim,
                         batch=index,
                         psnr=psnr,
                         lr=scheduler.current_lr)
        train_loss.append(loss.item())
        train_ssim.append(ssim)
        train_psnr.append(psnr)

        # +++++++++++++++++++++++++++++++++++++
        #      save checkpoints by iterations
        # -------------------------------------