def conv3x3mtl(in_planes, out_planes, stride=1):
    """3x3 convolution with padding"""
    return Conv2dMtl(in_planes,
                     out_planes,
                     kernel_size=3,
                     stride=stride,
                     padding=1,
                     bias=False)
Exemple #2
0
    def __init__(self, block, layers, num_classes=10):
        self.inplanes = 16
        super(ResNetMtl, self).__init__()
        self.conv1 = Conv2dMtl(3, 16, kernel_size=3, stride=1, padding=1,
                               bias=False)
        self.bn1 = nn.BatchNorm2d(16)
        self.relu = nn.ReLU(inplace=True)
        self.layer1 = self._make_layer(block, 16, layers[0])
        self.layer2 = self._make_layer(block, 32, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 64, layers[2], stride=2, last_phase=True)
        self.avgpool = nn.AvgPool2d(8, stride=1)
        self.fc = modified_linear.CosineLinear(64 * block.expansion, num_classes)

        for m in self.modules():
            if isinstance(m, Conv2dMtl):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)
Exemple #3
0
    def _make_layer(self, block, planes, blocks, stride=1, last_phase=False):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                Conv2dMtl(self.inplanes, planes * block.expansion,
                          kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(planes * block.expansion),
            )

        layers = []
        layers.append(block(self.inplanes, planes, stride, downsample))
        self.inplanes = planes * block.expansion
        if last_phase:
            for i in range(1, blocks-1):
                layers.append(block(self.inplanes, planes))
            layers.append(block(self.inplanes, planes, last=True))
        else: 
            for i in range(1, blocks):
                layers.append(block(self.inplanes, planes))

        return nn.Sequential(*layers)
Exemple #4
0
def conv3x3mtl(in_planes, out_planes, stride=1):
    return Conv2dMtl(in_planes, out_planes, kernel_size=3, stride=stride,
                     padding=1, bias=False)