def plot_train_probs(subject, data_path, model_path): with open(model_path + "/" + subject + ".pickle", "rb") as f: state_dict = cPickle.load(f) cnn = ConvNet(state_dict["params"]) cnn.set_weights(state_dict["weights"]) scalers = state_dict["scalers"] d = load_train_data(data_path, subject) x, y = d["x"], d["y"] x, _ = ( scale_across_time(x, x_test=None, scalers=scalers) if state_dict["params"]["scale_time"] else scale_across_features(x, x_test=None, scalers=scalers) ) cnn.batch_size.set_value(x.shape[0]) probs = cnn.get_test_proba(x) fpr, tpr, threshold = roc_curve(y, probs) c = np.sqrt((1 - tpr) ** 2 + fpr ** 2) opt_threshold = threshold[np.where(c == np.min(c))[0]] print opt_threshold x_coords = np.zeros(len(y), dtype="float64") rng = np.random.RandomState(42) x_coords += rng.normal(0.0, 0.08, size=len(x_coords)) plt.scatter(x_coords, probs, c=y, s=60) plt.title(subject) plt.show()
def plot_features(subject, data_path, model_path, test_labels, dataset='test'): with open(model_path + '/' + subject + '.pickle', 'rb') as f: state_dict = cPickle.load(f) cnn = ConvNet(state_dict['params']) cnn.set_weights(state_dict['weights']) scalers = state_dict['scalers'] if dataset == 'test': d = load_test_data(data_path, subject) x = d['x'] y = test_labels['preictal'] elif dataset == 'train': d = load_train_data(data_path, subject) x, y = d['x'], d['y'] else: raise ValueError('dataset') x, _ = scale_across_time(x, x_test=None, scalers=scalers) if state_dict['params']['scale_time'] \ else scale_across_features(x, x_test=None, scalers=scalers) cnn.batch_size.set_value(x.shape[0]) get_features = theano.function([cnn.x, Param(cnn.training_mode, default=0)], cnn.feature_extractor.output, allow_input_downcast=True) logits_test = get_features(x) model = TSNE(n_components=2, random_state=0) z = model.fit_transform(np.float64(logits_test)) plt.scatter(z[:, 0], z[:, 1], s=60, c=y) plt.show()
def plot_train_probs(subject, data_path, model_path): with open(model_path + '/' + subject + '.pickle', 'rb') as f: state_dict = pickle.load(f) cnn = ConvNet(state_dict['params']) cnn.set_weights(state_dict['weights']) scalers = state_dict['scalers'] d = load_train_data(data_path, subject) x, y = d['x'], d['y'] x, _ = scale_across_time(x, x_test=None, scalers=scalers) if state_dict['params']['scale_time'] \ else scale_across_features(x, x_test=None, scalers=scalers) cnn.batch_size.set_value(x.shape[0]) probs = cnn.get_test_proba(x) fpr, tpr, threshold = roc_curve(y, probs) c = np.sqrt((1 - tpr)**2 + fpr**2) opt_threshold = threshold[np.where(c == np.min(c))[0]] print(opt_threshold) x_coords = np.zeros(len(y), dtype='float64') rng = np.random.RandomState(42) x_coords += rng.normal(0.0, 0.08, size=len(x_coords)) plt.scatter(x_coords, probs, c=y, s=60) plt.title(subject) plt.show()
def cross_validate(subject, data_path, reg_C, random_cv=False): if random_cv: d = load_train_data(data_path, subject) x, y = d['x'], d['y'] skf = StratifiedKFold(y, n_folds=10) else: filenames_grouped_by_hour = cPickle.load(open('filenames.pickle')) data_grouped_by_hour = load_grouped_train_data( data_path, subject, filenames_grouped_by_hour) n_preictal, n_interictal = len(data_grouped_by_hour['preictal']), len( data_grouped_by_hour['interictal']) hours_data = data_grouped_by_hour['preictal'] + data_grouped_by_hour[ 'interictal'] hours_labels = np.concatenate( (np.ones(n_preictal), np.zeros(n_interictal))) n_folds = n_preictal skf = StratifiedKFold(hours_labels, n_folds=n_folds) preictal_probs, labels = [], [] for train_indexes, valid_indexes in skf: x_train, x_valid = [], [] y_train, y_valid = [], [] for i in train_indexes: x_train.extend(hours_data[i]) y_train.extend(hours_labels[i] * np.ones(len(hours_data[i]))) for i in valid_indexes: x_valid.extend(hours_data[i]) y_valid.extend(hours_labels[i] * np.ones(len(hours_data[i]))) x_train = [x[..., np.newaxis] for x in x_train] x_train = np.concatenate(x_train, axis=3) x_train = np.rollaxis(x_train, axis=3) y_train = np.array(y_train) x_valid = [x[..., np.newaxis] for x in x_valid] x_valid = np.concatenate(x_valid, axis=3) x_valid = np.rollaxis(x_valid, axis=3) y_valid = np.array(y_valid) n_valid_examples = x_valid.shape[0] n_timesteps = x_valid.shape[-1] x_train, y_train = reshape_data(x_train, y_train) data_scaler = StandardScaler() x_train = data_scaler.fit_transform(x_train) logreg = LogisticRegression(C=reg_C) logreg.fit(x_train, y_train) x_valid = reshape_data(x_valid) x_valid = data_scaler.transform(x_valid) p_valid = predict(logreg, x_valid, n_valid_examples, n_timesteps) preictal_probs.extend(p_valid) labels.extend(y_valid) return preictal_probs, labels
def train(subject, data_path, reg_C=None): d = load_train_data(data_path, subject) x, y = d['x'], d['y'] x, y = reshape_data(x, y) data_scaler = StandardScaler() x = data_scaler.fit_transform(x) lda = LogisticRegression(C=reg_C) lda.fit(x, y) return lda, data_scaler
def curve_per_subject(subject, data_path, test_labels): d = load_train_data(data_path, subject) x, y_10m = d['x'], d['y'] n_train_examples = x.shape[0] n_timesteps = x.shape[-1] print('n_preictal', np.sum(y_10m)) print('n_inetrictal', np.sum(y_10m - 1)) x, y = reshape_data(x, y_10m) data_scaler = StandardScaler() x = data_scaler.fit_transform(x) lda = LDA() lda.fit(x, y) pred_1m = lda.predict_proba(x)[:, 1] pred_10m = np.reshape(pred_1m, (n_train_examples, n_timesteps)) pred_10m = np.mean(pred_10m, axis=1) fpr, tpr, threshold = roc_curve(y_10m, pred_10m) c = np.sqrt((1 - tpr) ** 2 + fpr ** 2) opt_threshold = threshold[np.where(c == np.min(c))[0]][-1] print(opt_threshold) # ------- TEST --------------- d = load_test_data(data_path, subject) x_test, id = d['x'], d['id'] n_test_examples = x_test.shape[0] n_timesteps = x_test.shape[3] x_test = reshape_data(x_test) x_test = data_scaler.transform(x_test) pred_1m = lda.predict_proba(x_test)[:, 1] pred_10m = np.reshape(pred_1m, (n_test_examples, n_timesteps)) pred_10m = np.mean(pred_10m, axis=1) y_pred = np.zeros_like(test_labels) y_pred[np.where(pred_10m >= opt_threshold)] = 1 cm = confusion_matrix(test_labels, y_pred) print(print_cm(cm, labels=['interictal', 'preictal'])) sn = 1.0 * cm[1, 1] / (cm[1, 1] + cm[1, 0]) sp = 1.0 * cm[0, 0] / (cm[0, 0] + cm[0, 1]) print(sn, sp) sn, sp = [], [] t_list = np.arange(0.0, 1.0, 0.01) for t in t_list: y_pred = np.zeros_like(test_labels) y_pred[np.where(pred_10m >= t)] = 1 cm = confusion_matrix(test_labels, y_pred) sn_t = 1.0 * cm[1, 1] / (cm[1, 1] + cm[1, 0]) sp_t = 1.0 * cm[0, 0] / (cm[0, 0] + cm[0, 1]) sn.append(sn_t) sp.append(sp_t) return t_list, sn, sp
def curve_per_subject(subject, data_path, test_labels): d = load_train_data(data_path, subject) x, y_10m = d['x'], d['y'] n_train_examples = x.shape[0] n_timesteps = x.shape[-1] print 'n_preictal', np.sum(y_10m) print 'n_inetrictal', np.sum(y_10m - 1) x, y = reshape_data(x, y_10m) data_scaler = StandardScaler() x = data_scaler.fit_transform(x) lda = LDA() lda.fit(x, y) pred_1m = lda.predict_proba(x)[:, 1] pred_10m = np.reshape(pred_1m, (n_train_examples, n_timesteps)) pred_10m = np.mean(pred_10m, axis=1) fpr, tpr, threshold = roc_curve(y_10m, pred_10m) c = np.sqrt((1 - tpr) ** 2 + fpr ** 2) opt_threshold = threshold[np.where(c == np.min(c))[0]][-1] print opt_threshold # ------- TEST --------------- d = load_test_data(data_path, subject) x_test, id = d['x'], d['id'] n_test_examples = x_test.shape[0] n_timesteps = x_test.shape[3] x_test = reshape_data(x_test) x_test = data_scaler.transform(x_test) pred_1m = lda.predict_proba(x_test)[:, 1] pred_10m = np.reshape(pred_1m, (n_test_examples, n_timesteps)) pred_10m = np.mean(pred_10m, axis=1) y_pred = np.zeros_like(test_labels) y_pred[np.where(pred_10m >= opt_threshold)] = 1 cm = confusion_matrix(test_labels, y_pred) print print_cm(cm, labels=['interictal', 'preictal']) sn = 1.0 * cm[1, 1] / (cm[1, 1] + cm[1, 0]) sp = 1.0 * cm[0, 0] / (cm[0, 0] + cm[0, 1]) print sn, sp sn, sp = [], [] t_list = np.arange(0.0, 1.0, 0.01) for t in t_list: y_pred = np.zeros_like(test_labels) y_pred[np.where(pred_10m >= t)] = 1 cm = confusion_matrix(test_labels, y_pred) sn_t = 1.0 * cm[1, 1] / (cm[1, 1] + cm[1, 0]) sp_t = 1.0 * cm[0, 0] / (cm[0, 0] + cm[0, 1]) sn.append(sn_t) sp.append(sp_t) return t_list, sn, sp
def cross_validate(subject, data_path, reg_C, random_cv=False): if random_cv: d = load_train_data(data_path,subject) x, y = d['x'], d['y'] skf = StratifiedKFold(y, n_folds=10) else: filenames_grouped_by_hour = cPickle.load(open('filenames.pickle')) data_grouped_by_hour = load_grouped_train_data(data_path, subject, filenames_grouped_by_hour) n_preictal, n_interictal = len(data_grouped_by_hour['preictal']), len(data_grouped_by_hour['interictal']) hours_data = data_grouped_by_hour['preictal'] + data_grouped_by_hour['interictal'] hours_labels = np.concatenate((np.ones(n_preictal), np.zeros(n_interictal))) n_folds = n_preictal skf = StratifiedKFold(hours_labels, n_folds=n_folds) preictal_probs, labels = [], [] for train_indexes, valid_indexes in skf: x_train, x_valid = [], [] y_train, y_valid = [], [] for i in train_indexes: x_train.extend(hours_data[i]) y_train.extend(hours_labels[i] * np.ones(len(hours_data[i]))) for i in valid_indexes: x_valid.extend(hours_data[i]) y_valid.extend(hours_labels[i] * np.ones(len(hours_data[i]))) x_train = [x[..., np.newaxis] for x in x_train] x_train = np.concatenate(x_train, axis=3) x_train = np.rollaxis(x_train, axis=3) y_train = np.array(y_train) x_valid = [x[..., np.newaxis] for x in x_valid] x_valid = np.concatenate(x_valid, axis=3) x_valid = np.rollaxis(x_valid, axis=3) y_valid = np.array(y_valid) n_valid_examples = x_valid.shape[0] n_timesteps = x_valid.shape[-1] x_train, y_train = reshape_data(x_train, y_train) data_scaler = StandardScaler() x_train = data_scaler.fit_transform(x_train) logreg = LogisticRegression(C=reg_C) logreg.fit(x_train, y_train) x_valid = reshape_data(x_valid) x_valid = data_scaler.transform(x_valid) p_valid = predict(logreg, x_valid, n_valid_examples, n_timesteps) preictal_probs.extend(p_valid) labels.extend(y_valid) return preictal_probs, labels
def train(subject, data_path, plot=False): d = load_train_data(data_path, subject) x, y = d['x'], d['y'] print 'n_preictal', np.sum(y) print 'n_inetrictal', np.sum(y - 1) n_channels = x.shape[1] n_fbins = x.shape[2] x, y = reshape_data(x, y) data_scaler = StandardScaler() x = data_scaler.fit_transform(x) lda = LDA() lda.fit(x, y) coef = lda.scalings_ * lda.coef_[:1].T channels = [] fbins = [] for c in range(n_channels): fbins.extend(range(n_fbins)) # 0- delta, 1- theta ... channels.extend([c] * n_fbins) if plot: fig = plt.figure() for i in range(n_channels): if n_channels == 24: fig.add_subplot(4, 6, i) else: fig.add_subplot(4, 4, i) ax = plt.gca() ax.set_xlim([0, n_fbins]) ax.set_xticks(np.arange(0.5, n_fbins + 0.5, 1)) ax.set_xticklabels(np.arange(0, n_fbins)) max_y = max(abs(coef)) + 0.01 ax.set_ylim([0, max_y]) ax.set_yticks( np.around(np.arange(0, max_y, max_y / 4.0), decimals=1)) for label in (ax.get_xticklabels() + ax.get_yticklabels()): label.set_fontsize(15) plt.bar(range(0, n_fbins), abs(coef[i * n_fbins:i * n_fbins + n_fbins])) fig.suptitle(subject, fontsize=20) plt.show() coefs = np.reshape(coef, (n_channels, n_fbins)) return lda, data_scaler, coefs
def train(subject, data_path, plot=False): d = load_train_data(data_path, subject) x, y = d['x'], d['y'] print 'n_preictal', np.sum(y) print 'n_inetrictal', np.sum(y - 1) n_channels = x.shape[1] n_fbins = x.shape[2] x, y = reshape_data(x, y) data_scaler = StandardScaler() x = data_scaler.fit_transform(x) lda = LDA() lda.fit(x, y) coef = lda.scalings_ * lda.coef_[:1].T channels = [] fbins = [] for c in range(n_channels): fbins.extend(range(n_fbins)) # 0- delta, 1- theta ... channels.extend([c] * n_fbins) if plot: fig = plt.figure() for i in range(n_channels): if n_channels == 24: fig.add_subplot(4, 6, i) else: fig.add_subplot(4, 4, i) ax = plt.gca() ax.set_xlim([0, n_fbins]) ax.set_xticks(np.arange(0.5, n_fbins + 0.5, 1)) ax.set_xticklabels(np.arange(0, n_fbins)) max_y = max(abs(coef)) + 0.01 ax.set_ylim([0, max_y]) ax.set_yticks(np.around(np.arange(0, max_y, max_y / 4.0), decimals=1)) for label in (ax.get_xticklabels() + ax.get_yticklabels()): label.set_fontsize(15) plt.bar(range(0, n_fbins), abs(coef[i * n_fbins:i * n_fbins + n_fbins])) fig.suptitle(subject, fontsize=20) plt.show() coefs = np.reshape(coef, (n_channels, n_fbins)) return lda, data_scaler, coefs
def plot_train_test(subject, data_path): d = load_train_data(data_path, subject) x_train = d['x'] x_train = x_train.reshape(x_train.shape[0], x_train.shape[1] * x_train.shape[2] * x_train.shape[3]) d = load_test_data(data_path, subject) x_test, id = d['x'], d['id'] x_test = np.reshape(x_test, (x_test.shape[0], x_test.shape[1] * x_test.shape[2] * x_test.shape[3])) x_all = np.vstack((np.float64(x_train), np.float64(x_test))) scaler = StandardScaler() x_all = scaler.fit_transform(x_all) colors = ['r'] * len(x_train) + ['b'] * len(x_test) markers = ['o'] * len(x_train) + ['^'] * len(x_test) pca = PCA(50) pca.fit(x_all) x_all = pca.fit_transform(x_all) model = TSNE(n_components=2, perplexity=40, learning_rate=100, random_state=42) z = model.fit_transform(x_all) for a, b, c, d in zip(z[:, 0], z[:, 1], colors, markers): plt.scatter(a, b, c=c, s=60, marker=d) plt.scatter(z[0, 0], z[0, 1], c=colors[0], marker=markers[0], s=60, label='train') plt.scatter(z[-1, 0], z[-1, 1], c=colors[-1], marker=markers[-1], s=60, label='test') zz = z[np.where(np.array(markers) != u' ')[0], :] ax = plt.subplot(111) ax.legend(loc='upper center', bbox_to_anchor=(0.5, 1.05), ncol=2, fancybox=True, shadow=True) plt.xlim([min(zz[:, 0]) - 0.5, max(zz[:, 0] + 0.5)]) plt.ylim([min(zz[:, 1]) - 0.5, max(zz[:, 1] + 0.5)]) for label in (ax.get_xticklabels() + ax.get_yticklabels()): label.set_fontsize(20) plt.ylabel('Z_2', fontsize=20) plt.xlabel('Z_1', fontsize=20) plt.show()
def train(subject, data_path, model_path, model_params, validation_params): d = load_train_data(data_path, subject) x, y, filename_to_idx = d['x'], d['y'], d['filename_to_idx'] x_test = load_test_data(data_path, subject)['x'] if model_params['use_test'] else None # --------- add params model_params['n_channels'] = x.shape[1] model_params['n_fbins'] = x.shape[2] model_params['n_timesteps'] = x.shape[3] print '============ parameters' for key, value in model_params.items(): print key, ':', value print '========================' x_train, y_train = None, None x_valid, y_valid = None, None if model_params['overlap']: # no validation if overlap filenames_grouped_by_hour = cPickle.load(open('filenames.pickle')) data_grouped_by_hour = load_grouped_train_data( data_path, subject, filenames_grouped_by_hour) x, y = generate_overlapped_data(data_grouped_by_hour, overlap_size=model_params['overlap'], window_size=x.shape[-1], overlap_interictal=True, overlap_preictal=True) print x.shape x, scalers = scale_across_time(x, x_test=None) if model_params['scale_time'] \ else scale_across_features(x, x_test=None) cnn = ConvNet(model_params) cnn.train(train_set=(x, y), max_iter=175000) state_dict = cnn.get_state() state_dict['scalers'] = scalers with open(model_path + '/' + subject + '.pickle', 'wb') as f: cPickle.dump(state_dict, f, protocol=cPickle.HIGHEST_PROTOCOL) return else: if validation_params['random_split']: skf = StratifiedShuffleSplit(y, n_iter=1, test_size=0.25, random_state=0) for train_idx, valid_idx in skf: x_train, y_train = x[train_idx], y[train_idx] x_valid, y_valid = x[valid_idx], y[valid_idx] else: filenames_grouped_by_hour = cPickle.load(open('filenames.pickle')) d = split_train_valid_filenames(subject, filenames_grouped_by_hour) train_filenames, valid_filenames = d['train_filenames'], d[ 'valid_filnames'] train_idx = [filename_to_idx[i] for i in train_filenames] valid_idx = [filename_to_idx[i] for i in valid_filenames] x_train, y_train = x[train_idx], y[train_idx] x_valid, y_valid = x[valid_idx], y[valid_idx] if model_params['scale_time']: x_train, scalers_train = scale_across_time(x=x_train, x_test=x_test) x_valid, _ = scale_across_time(x=x_valid, x_test=x_test, scalers=scalers_train) else: x_train, scalers_train = scale_across_features(x=x_train, x_test=x_test) x_valid, _ = scale_across_features(x=x_valid, x_test=x_test, scalers=scalers_train) del x, x_test print '============ dataset' print 'train:', x_train.shape print 'n_pos:', np.sum(y_train), 'n_neg:', len(y_train) - np.sum(y_train) print 'valid:', x_valid.shape print 'n_pos:', np.sum(y_valid), 'n_neg:', len(y_valid) - np.sum(y_valid) # -------------- validate cnn = ConvNet(model_params) best_iter = cnn.validate(train_set=(x_train, y_train), valid_set=(x_valid, y_valid), valid_freq=validation_params['valid_freq'], max_iter=validation_params['max_iter'], fname_out=model_path + '/' + subject + '.txt') # ---------------- scale d = load_train_data(data_path, subject) x, y, filename_to_idx = d['x'], d['y'], d['filename_to_idx'] x_test = load_test_data(data_path, subject)['x'] if model_params['use_test'] else None x, scalers = scale_across_time(x=x, x_test=x_test) if model_params['scale_time'] \ else scale_across_features(x=x, x_test=x_test) del x_test cnn = ConvNet(model_params) cnn.train(train_set=(x, y), max_iter=best_iter) state_dict = cnn.get_state() state_dict['scalers'] = scalers with open(model_path + '/' + subject + '.pickle', 'wb') as f: cPickle.dump(state_dict, f, protocol=cPickle.HIGHEST_PROTOCOL)
""" Loop over all patients, make probabilistic predictions for each method within a given patient combine the probalities by either: 1) just summing them up 2) subtracting the mean prediction probability from each class for each method and then summing (Avoids all 0 predictions) """ all_predictions = [] all_predictions_ns = [] validations_true = [] validations_preds = [] for patient in all_patients: #LOAD DATA d = load_train_data('preprocessed/cnn/', patient) x, y, filename_to_idx = d['x'], d['y'], d['filename_to_idx'] x_test = load_test_data('preprocessed/cnn/', patient)['x'] test_preds,test_preds_ns,val_preds, val_true,train_loss,valid_loss= train_predict_test_cnn( patient,CNN(patient),x,x_test,enhance_size = 1000) roc_area = roc_auc_score(val_true,val_preds) print patient, roc_area plot = plt.figure() plot_train_val_loss(train_loss,valid_loss,patient) plot.savefig('./figs/CNN'+patient+'train_val.png') all_predictions.append(test_preds)
def train(subject, data_path, model_path, model_params, validation_params): d = load_train_data(data_path, subject) x, y, filename_to_idx = d['x'], d['y'], d['filename_to_idx'] x_test = load_test_data(data_path, subject)['x'] if model_params['use_test'] else None # --------- add params model_params['n_channels'] = x.shape[1] model_params['n_fbins'] = x.shape[2] model_params['n_timesteps'] = x.shape[3] print '============ parameters' for key, value in model_params.items(): print key, ':', value print '========================' x_train, y_train = None, None x_valid, y_valid = None, None if model_params['overlap']: # no validation if overlap filenames_grouped_by_hour = cPickle.load(open('filenames.pickle')) data_grouped_by_hour = load_grouped_train_data(data_path, subject, filenames_grouped_by_hour) x, y = generate_overlapped_data(data_grouped_by_hour, overlap_size=model_params['overlap'], window_size=x.shape[-1], overlap_interictal=True, overlap_preictal=True) print x.shape x, scalers = scale_across_time(x, x_test=None) if model_params['scale_time'] \ else scale_across_features(x, x_test=None) cnn = ConvNet(model_params) cnn.train(train_set=(x, y), max_iter=175000) state_dict = cnn.get_state() state_dict['scalers'] = scalers with open(model_path + '/' + subject + '.pickle', 'wb') as f: cPickle.dump(state_dict, f, protocol=cPickle.HIGHEST_PROTOCOL) return else: if validation_params['random_split']: skf = StratifiedShuffleSplit(y, n_iter=1, test_size=0.25, random_state=0) for train_idx, valid_idx in skf: x_train, y_train = x[train_idx], y[train_idx] x_valid, y_valid = x[valid_idx], y[valid_idx] else: filenames_grouped_by_hour = cPickle.load(open('filenames.pickle')) d = split_train_valid_filenames(subject, filenames_grouped_by_hour) train_filenames, valid_filenames = d['train_filenames'], d['valid_filnames'] train_idx = [filename_to_idx[i] for i in train_filenames] valid_idx = [filename_to_idx[i] for i in valid_filenames] x_train, y_train = x[train_idx], y[train_idx] x_valid, y_valid = x[valid_idx], y[valid_idx] if model_params['scale_time']: x_train, scalers_train = scale_across_time(x=x_train, x_test=x_test) x_valid, _ = scale_across_time(x=x_valid, x_test=x_test, scalers=scalers_train) else: x_train, scalers_train = scale_across_features(x=x_train, x_test=x_test) x_valid, _ = scale_across_features(x=x_valid, x_test=x_test, scalers=scalers_train) del x, x_test print '============ dataset' print 'train:', x_train.shape print 'n_pos:', np.sum(y_train), 'n_neg:', len(y_train) - np.sum(y_train) print 'valid:', x_valid.shape print 'n_pos:', np.sum(y_valid), 'n_neg:', len(y_valid) - np.sum(y_valid) # -------------- validate cnn = ConvNet(model_params) best_iter = cnn.validate(train_set=(x_train, y_train), valid_set=(x_valid, y_valid), valid_freq=validation_params['valid_freq'], max_iter=validation_params['max_iter'], fname_out=model_path + '/' + subject + '.txt') # ---------------- scale d = load_train_data(data_path, subject) x, y, filename_to_idx = d['x'], d['y'], d['filename_to_idx'] x_test = load_test_data(data_path, subject)['x'] if model_params['use_test'] else None x, scalers = scale_across_time(x=x, x_test=x_test) if model_params['scale_time'] \ else scale_across_features(x=x, x_test=x_test) del x_test cnn = ConvNet(model_params) cnn.train(train_set=(x, y), max_iter=best_iter) state_dict = cnn.get_state() state_dict['scalers'] = scalers with open(model_path + '/' + subject + '.pickle', 'wb') as f: cPickle.dump(state_dict, f, protocol=cPickle.HIGHEST_PROTOCOL)