def __init__(self, args): """Constructor of the winservice.""" win32serviceutil.ServiceFramework.__init__(self, args) self.hWaitStop = win32event.CreateEvent(None, 0, 0, None) socket.setdefaulttimeout(60) logger.init_logging() self.app = None
def main(): ltype = 'basic' ext = None if len(sys.argv) >= 2: ltype = sys.argv[1] result = re.match('.+\.(.+)$', ltype) if result: ext = result.group(1) if ltype == 'basic': log = logger.init_basic(fname='simple.log') elif ltype == 'simple': log = logger.init_logging() elif ltype == 'rot': log = logger.init_logging(rotate_size=1000) elif ltype == 'trot': # log = logger.init_logging(rotate_interval=5) log = logger.init_logging(rotate_seconds=30) elif ltype == 'code': log = logger.init_logging(err_file="err.log") elif ext == 'yml': log = logger.init_logging_yaml(ltype) elif ext == 'ini': log = logger.init_logging_ini(ltype) else: print("invalid arg "+ ltype) return 1 print("got here ") log.warning("BEGINS") log.debug('debug ') log.info("some info") log.warning("we might have a problem") log.error("something bad") sample.func1() logger.list_handlers() print(f"wrote: {logger.log_file}") return 0
def __init__(self): """ init初始化 """ # 清理旧日志 clear_log(AIRTEST_LOG) # 设置日志目录 set_logdir(AIRTEST_LOG) # 初始化日志 init_logging() # 等待显示时间 self.timeout = ST.FIND_TIMEOUT # airtest-api self.api = api self.poco = AndroidUiautomationPoco(use_airtest_input=True, screenshot_each_action=False) self.UIObj = UIObjectProxy(poco=self.poco)
from aiohttp import web from utils.logger import init_logging from logging import info from db.create_db import init_db import config import telegram if __name__ == '__main__': init_logging() init_db() info('Starting the bot') telegram.bot.remove_webhook() if config.dev_mode: telegram.bot.polling() else: import webhook telegram.bot.set_webhook( url=config.webhook_url_base + config.webhook_url_path, certificate=open(config.webhook_ssl_cert, 'r')) info('Starting the webhook') web.run_app( webhook.hook, host=config.webhook_listen, port=config.webhook_port, ssl_context=webhook.ssl_context, )
def email(x): automated_emails.auto_email(["*****@*****.**"], subject="ERROR DETECTED: Recollect Data " "Import/Ovewrite/Dataupload" "Script", text=str(x)) now = datetime.datetime.now().strftime('%Y%m%d_%H_Hours_%M_Mins_%S_Sec') arcpy.env.overwriteOutput = 1 arcpy.Delete_management("in_memory") out_direct = r"\\Apexgis\GIS\recollect_appdata" pub_db = r"C:\Users\Jlong\AppData\Roaming\ESRI\Desktop10.5\ArcCatalog\APEXPUBLISHER_jlong.sde" arcpy.env.workspace = pub_db log = logger.init_logging(r"\\Apexgis\GIS\recollect_appdata\logfiles", "RecollectDataUpload") log.info("Initializing Log:%s" % log) success_msg = "---SUCCESSFUL EXECUTION---" fail_msg = "---FAILURE---" try: par_csv = None if len(glob.glob( r'\\Apexgis\GIS\recollect_appdata\csv_download\*.csv')) > 1: print "There should only be the most current CSV file in the directory" log.warning( "More than 1 CSV detected in csv_download network directory") else: print "Current Recollect Parcels CSV detected" par_csv = glob.glob( r'\\Apexgis\GIS\recollect_appdata\csv_download\*.csv')[0]
import sys from utils import shell from utils import logger from monitor.cluster_monitor import DbClusterMonitor if __name__ == '__main__': logger.init_logging() config_loaded = False config = {} while not config_loaded: config_loaded, config = shell.load_config_ini() app = DbClusterMonitor(config) sys.exit(app.start())
import argparse import traceback import concurrent.futures from backoffice.crawler.cdc import CdcCrawler from utils.crawler import _NEW_RUMOR, _OLD_RUMOR, _FAILED, fetch_latest_create_date_of_rumor from utils.logger import init_logging, logger from utils.settings import Settings from models.aws.ddb.rumor_model import RumorModel setting = Settings(_env_file='config/env') init_logging(setting) parser = argparse.ArgumentParser() parser.add_argument("-d", "--date", help="To crawler content from date", default=None, type=str) parser.add_argument("-u", "--update", help="To update rumor content by re-crawlering", default=False, type=bool, action=argparse.BooleanOptionalAction) args = parser.parse_args() def parsing_work(crawler, rumor_info): try: fetched = False
def main(): parser = argparse.ArgumentParser() parser.add_argument('--root_dir') parser.add_argument('--train_path', default='raw/rawtext/train.bioes.txt') parser.add_argument('--dev_path', default='raw/rawtext/valid.bioes.txt') parser.add_argument('--test_path', default='raw/rawtext/test.bioes.txt') parser.add_argument('--embedding_type', choices=['senna', 'glove', 'sskip', 'polyglot'], default='glove') parser.add_argument('--embedding_path', default='raw/embedd/glove.6B.100d.txt') parser.add_argument('--ngpu', type=int, default=1) parser.add_argument('--gpu_id', type=int, default=0) parser.add_argument('--load_checkpoint', action='store_true', default=False) parser.add_argument('--load_checkpoint_path') parser.add_argument('--model_name', choices=['RNNT', 'NCRFT'], default='RNNT') parser.add_argument('--checkpoint_path', default='checkpoints') parser.add_argument('--tmp_path') parser.add_argument('--decode_mode', choices=['greedy', 'beam'], default='greedy') parser.add_argument('--loss', choices=['local-joint', 'local-separate', 'global-joint-normal', \ 'global-joint-logsoftmax', 'global-separate-normal', 'global-separate-logsoftmax']) args = parser.parse_args() os.environ["CUDA_VISIBLE_DEVICES"] = "%d" % (args.gpu_id) logger, args.root_dir = init_logging('log-%s' % args.model_name, time.time()) dataset = CoNLL03_Dataset(args.train_path, [args.dev_path, args.test_path], logger) dataset.read_embedding(args.embedding_type, args.embedding_path) print("Create Alphabets...") alphabet_path = os.path.join(args.root_dir, 'alphabet') dataset.create_alphabets(alphabet_path, max_vocabulary_size=50000) args.checkpoint_path = os.path.join(args.root_dir, 'checkpoint') os.makedirs(args.checkpoint_path) args.tmp_path = os.path.join(args.root_dir, 'tmp') os.makedirs(args.tmp_path) writer = CoNLL03Writer(dataset._word_alphabet, dataset._char_alphabet, dataset._pos_alphabet, \ dataset._chunk_alphabet, dataset._ner_alphabet) with open(os.path.join(args.checkpoint_path, 'args.json'), 'w') as f: json.dump(vars(args), f) if args.model_name == 'RNNT': trainer = RNNT_Trainer(args, dataset, logger, writer) elif args.model_name == 'NCRFT': trainer = NCRFT_Trainer(args, dataset, logger, writer) trainer.train()
def run(hps="teeny", port=29500, **kwargs): #from jukebox.utils.dist_utils import setup_dist_from_mpi from utils.dist_utils import setup_dist_from_mpi rank, local_rank, device = setup_dist_from_mpi(port=port) hps = setup_hparams(hps, kwargs) hps.ngpus = dist.get_world_size() hps.argv = " ".join(sys.argv) hps.bs_sample = hps.nworkers = hps.bs # Setup dataset data_processor = DataProcessor(hps) # Setup models vqvae = make_vqvae(hps, device) print_once(f"Parameters VQVAE:{count_parameters(vqvae)}") if hps.prior: prior = make_prior(hps, vqvae, device) print_once(f"Parameters Prior:{count_parameters(prior)}") model = prior else: model = vqvae # Setup opt, ema and distributed_model. opt, shd, scalar = get_optimizer(model, hps) ema = get_ema(model, hps) distributed_model = get_ddp(model, hps) logger, metrics = init_logging(hps, local_rank, rank) logger.iters = model.step # 手直し======================================================================= print("start epoch=", hps.curr_epoch) print("end epoch=", hps.epochs) print("epoch length=", len(range(hps.curr_epoch, hps.epochs))) #============================================================================== # Run training, eval, sample for epoch in range(hps.curr_epoch, hps.epochs): # 手直し======================================================================= print(datetime.datetime.now(), " epoch=", epoch) #============================================================================== metrics.reset() data_processor.set_epoch(epoch) if hps.train: train_metrics = train(distributed_model, model, opt, shd, scalar, ema, logger, metrics, data_processor, hps) train_metrics['epoch'] = epoch if rank == 0: print( 'Train', ' '.join([ f'{key}: {val:0.4f}' for key, val in train_metrics.items() ])) dist.barrier() if hps.test: if ema: ema.swap() test_metrics = evaluate(distributed_model, model, logger, metrics, data_processor, hps) test_metrics['epoch'] = epoch if rank == 0: print( 'Ema', ' '.join([ f'{key}: {val:0.4f}' for key, val in test_metrics.items() ])) dist.barrier() if ema: ema.swap() dist.barrier()