def experiment(balance_seed, split_num): logger = initialize_logger(this_script_name, balance_seed, other=split_num) for pct_usage in np.arange(0.1, 1.1, 0.1): pct_usage = round(pct_usage, 2) agent = RnnAgent(device, logger, 'subj', 25, num_epochs, lr, None, 'dev', 128, pct_usage=pct_usage, balance_seed=balance_seed, split_num=split_num) agent.run() for geo in np.arange(0.1, 1.0, 0.1): geo = round(geo, 2) agent = RnnAgent(device, logger, 'subj', 25, num_epochs, lr, aug_mode, 'dev', 128, pct_usage=pct_usage, balance_seed=balance_seed, split_num=split_num, geo=geo) agent.run()
def experiment(balance_seed, split_num): logger = initialize_logger( this_script_name, balance_seed, other=split_num) for small_prop in np.arange(0.1, 1.0, 0.1): small_prop = round(small_prop, 2) for small_label in [0, 1]: for undersample in [False, True]: agent = RnnAgent(device, logger, 'subj', 25, num_epochs, lr, None, 'dev', 128, small_label=small_label, small_prop=small_prop, balance_seed=balance_seed, split_num=split_num, undersample=undersample) agent.run() for geo in np.arange(0.1, 1.0, 0.1): geo = round(geo, 2) agent = RnnAgent(device, logger, 'subj', 25, num_epochs, lr, aug_mode, 'dev', 128, small_label=small_label, small_prop=small_prop, balance_seed=balance_seed, split_num=split_num, geo=geo) agent.run()
def experiment(balance_seed, split_num): logger = initialize_logger(this_script_name, balance_seed, other=split_num) for small_prop in np.arange(0.2, 1.0, 0.2): small_prop = round(small_prop, 2) param_prop_map = param_map[small_prop] for small_label in [0, 1]: for undersample in [False, True]: if undersample: num_epochs = param_prop_map['under'] else: num_epochs = param_prop_map['over'] agent = RnnAgent(device, logger, 'sfu', input_length, num_epochs, lr, None, 'dev', 128, small_label=small_label, small_prop=small_prop, balance_seed=balance_seed, split_num=split_num, undersample=undersample) agent.run() geo, num_epochs = param_prop_map['aug'] geo = round(geo, 2) agent = RnnAgent(device, logger, 'sfu', input_length, num_epochs, lr, aug_mode, 'dev', 128, small_label=small_label, small_prop=small_prop, balance_seed=balance_seed, split_num=split_num, geo=geo) agent.run()
def experiment(balance_seed): logger = initialize_logger(this_script_name, balance_seed) for pct_usage in np.arange(0.1, 1.1, 0.1): pct_usage = round(pct_usage, 2) param_pct_map = param_map[pct_usage] geo, num_epochs = param_pct_map['aug'] agent = RnnAgent(device, logger, 'sst', 25, num_epochs, lr, 'synonym', 'test', 128, pct_usage=pct_usage, balance_seed=balance_seed, geo=geo) agent.run() num_epochs = param_pct_map['no'] agent = RnnAgent(device, logger, 'sst', 25, num_epochs, lr, None, 'test', 128, pct_usage=pct_usage, balance_seed=balance_seed) agent.run()
def experiment(balance_seed): logger = initialize_logger(this_script_name, balance_seed) for small_prop in np.arange(0.1, 1.0, 0.1): small_prop = round(small_prop, 2) param_prop_map = param_map[small_prop] for small_label in [0, 1]: geo, num_epochs = param_prop_map['aug'] agent = RnnAgent(device, logger, 'sst', 25, num_epochs + 1, lr, 'synonym', 'test', 128, small_label=small_label, small_prop=small_prop, balance_seed=balance_seed, geo=geo) agent.run() for undersample in [False, True]: if undersample: num_epochs = param_prop_map['under'] else: num_epochs = param_prop_map['over'] agent = RnnAgent(device, logger, 'sst', 25, num_epochs + 1, lr, None, 'test', 128, small_label=small_label, small_prop=small_prop, balance_seed=balance_seed, undersample=undersample) agent.run()
def experiment(balance_seed, split_num): logger = initialize_logger( this_script_name, balance_seed, other=split_num) for pct_usage in np.arange(0.2, 1.1, 0.2): pct_usage = round(pct_usage, 2) param_pct_map = param_map[pct_usage] num_epochs = param_pct_map['no'] agent = RnnAgent(device, logger, 'sfu', input_length, num_epochs, lr, None, 'dev', 128, pct_usage=pct_usage, balance_seed=balance_seed, split_num=split_num) agent.run() geo, num_epochs = param_pct_map['aug'] agent = RnnAgent(device, logger, 'sfu', input_length, num_epochs, lr, aug_mode, 'dev', 128, pct_usage=pct_usage, balance_seed=balance_seed, split_num=split_num, geo=geo) agent.run()
for geo in geos: agent = BiLSTMAgent(config, pct_usage, frac, geo) agent.run() def estimate_optimal_epochs(pct_usage): ''' Estimate optimal number of epochs for a pct_usage, using midrange frac and geo parameters ''' frac = 1 / 4 geo = 0.5 agent = BiLSTMAgent(config, pct_usage, frac, geo) agent.run() def grid_search_pcts(): percentages = ([0.02, 0.04, 0.06, 0.08] + [round(0.1 * i, 2) for i in range(1, 11)]) for pct_usage in percentages: grid_search(pct_usage) if __name__ == "__main__": config = get_config() initialize_logger() grid_search(1) # agent = BiLSTMAgent(config, pct_usage) # agent.run()