def train(args, snapshot_path): base_lr = args.base_lr train_data_path = args.root_path batch_size = args.batch_size max_iterations = args.max_iterations num_classes = 2 def create_model(ema=False): # Network definition net = net_factory_3d(net_type=args.model, in_chns=1, class_num=num_classes) model = net.cuda() if ema: for param in model.parameters(): param.detach_() return model model = create_model() ema_model = create_model(ema=True) db_train = BraTS2019(base_dir=train_data_path, split='train', num=None, transform=transforms.Compose([ RandomRotFlip(), RandomCrop(args.patch_size), ToTensor(), ])) def worker_init_fn(worker_id): random.seed(args.seed + worker_id) labeled_idxs = list(range(0, args.labeled_num)) unlabeled_idxs = list(range(args.labeled_num, 250)) batch_sampler = TwoStreamBatchSampler(labeled_idxs, unlabeled_idxs, batch_size, batch_size - args.labeled_bs) trainloader = DataLoader(db_train, batch_sampler=batch_sampler, num_workers=4, pin_memory=True, worker_init_fn=worker_init_fn) model.train() ema_model.train() optimizer = optim.SGD(model.parameters(), lr=base_lr, momentum=0.9, weight_decay=0.0001) ce_loss = CrossEntropyLoss() dice_loss = losses.DiceLoss(2) writer = SummaryWriter(snapshot_path + '/log') logging.info("{} iterations per epoch".format(len(trainloader))) iter_num = 0 max_epoch = max_iterations // len(trainloader) + 1 best_performance = 0.0 iterator = tqdm(range(max_epoch), ncols=70) for epoch_num in iterator: for i_batch, sampled_batch in enumerate(trainloader): volume_batch, label_batch = sampled_batch['image'], sampled_batch[ 'label'] volume_batch, label_batch = volume_batch.cuda(), label_batch.cuda() unlabeled_volume_batch = volume_batch[args.labeled_bs:] noise = torch.clamp( torch.randn_like(unlabeled_volume_batch) * 0.1, -0.2, 0.2) ema_inputs = unlabeled_volume_batch + noise outputs = model(volume_batch) outputs_soft = torch.softmax(outputs, dim=1) with torch.no_grad(): ema_output = ema_model(ema_inputs) T = 8 _, _, d, w, h = unlabeled_volume_batch.shape volume_batch_r = unlabeled_volume_batch.repeat(2, 1, 1, 1, 1) stride = volume_batch_r.shape[0] // 2 preds = torch.zeros([stride * T, 2, d, w, h]).cuda() for i in range(T // 2): ema_inputs = volume_batch_r + \ torch.clamp(torch.randn_like( volume_batch_r) * 0.1, -0.2, 0.2) with torch.no_grad(): preds[2 * stride * i:2 * stride * (i + 1)] = ema_model(ema_inputs) preds = torch.softmax(preds, dim=1) preds = preds.reshape(T, stride, 2, d, w, h) preds = torch.mean(preds, dim=0) uncertainty = -1.0 * \ torch.sum(preds*torch.log(preds + 1e-6), dim=1, keepdim=True) loss_ce = ce_loss(outputs[:args.labeled_bs], label_batch[:args.labeled_bs][:]) loss_dice = dice_loss(outputs_soft[:args.labeled_bs], label_batch[:args.labeled_bs].unsqueeze(1)) supervised_loss = 0.5 * (loss_dice + loss_ce) consistency_weight = get_current_consistency_weight(iter_num // 150) consistency_dist = losses.softmax_mse_loss( outputs[args.labeled_bs:], ema_output) # (batch, 2, 112,112,80) threshold = (0.75 + 0.25 * ramps.sigmoid_rampup( iter_num, max_iterations)) * np.log(2) mask = (uncertainty < threshold).float() consistency_loss = torch.sum( mask * consistency_dist) / (2 * torch.sum(mask) + 1e-16) loss = supervised_loss + consistency_weight * consistency_loss optimizer.zero_grad() loss.backward() optimizer.step() update_ema_variables(model, ema_model, args.ema_decay, iter_num) lr_ = base_lr * (1.0 - iter_num / max_iterations)**0.9 for param_group in optimizer.param_groups: param_group['lr'] = lr_ iter_num = iter_num + 1 writer.add_scalar('info/lr', lr_, iter_num) writer.add_scalar('info/total_loss', loss, iter_num) writer.add_scalar('info/loss_ce', loss_ce, iter_num) writer.add_scalar('info/loss_dice', loss_dice, iter_num) writer.add_scalar('info/consistency_loss', consistency_loss, iter_num) writer.add_scalar('info/consistency_weight', consistency_weight, iter_num) logging.info( 'iteration %d : loss : %f, loss_ce: %f, loss_dice: %f' % (iter_num, loss.item(), loss_ce.item(), loss_dice.item())) writer.add_scalar('loss/loss', loss, iter_num) if iter_num % 20 == 0: image = volume_batch[0, 0:1, :, :, 20:61:10].permute(3, 0, 1, 2).repeat(1, 3, 1, 1) grid_image = make_grid(image, 5, normalize=True) writer.add_image('train/Image', grid_image, iter_num) image = outputs_soft[0, 1:2, :, :, 20:61:10].permute(3, 0, 1, 2).repeat(1, 3, 1, 1) grid_image = make_grid(image, 5, normalize=False) writer.add_image('train/Predicted_label', grid_image, iter_num) image = label_batch[0, :, :, 20:61:10].unsqueeze(0).permute( 3, 0, 1, 2).repeat(1, 3, 1, 1) grid_image = make_grid(image, 5, normalize=False) writer.add_image('train/Groundtruth_label', grid_image, iter_num) if iter_num > 0 and iter_num % 200 == 0: model.eval() avg_metric = test_all_case(model, args.root_path, test_list="val.txt", num_classes=2, patch_size=args.patch_size, stride_xy=64, stride_z=64) if avg_metric[:, 0].mean() > best_performance: best_performance = avg_metric[:, 0].mean() save_mode_path = os.path.join( snapshot_path, 'iter_{}_dice_{}.pth'.format( iter_num, round(best_performance, 4))) save_best = os.path.join( snapshot_path, '{}_best_model.pth'.format(args.model)) torch.save(model.state_dict(), save_mode_path) torch.save(model.state_dict(), save_best) writer.add_scalar('info/val_dice_score', avg_metric[0, 0], iter_num) writer.add_scalar('info/val_hd95', avg_metric[0, 1], iter_num) logging.info('iteration %d : dice_score : %f hd95 : %f' % (iter_num, avg_metric[0, 0].mean(), avg_metric[0, 1].mean())) model.train() if iter_num % 3000 == 0: save_mode_path = os.path.join(snapshot_path, 'iter_' + str(iter_num) + '.pth') torch.save(model.state_dict(), save_mode_path) logging.info("save model to {}".format(save_mode_path)) if iter_num >= max_iterations: break if iter_num >= max_iterations: iterator.close() break writer.close() return "Training Finished!"
def train(args, snapshot_path): base_lr = args.base_lr num_classes = args.num_classes batch_size = args.batch_size max_iterations = args.max_iterations def create_model(ema=False): # Network definition model = net_factory(net_type=args.model, in_chns=1, class_num=num_classes) if ema: for param in model.parameters(): param.detach_() return model model = create_model() ema_model = create_model(ema=True) def worker_init_fn(worker_id): random.seed(args.seed + worker_id) db_train = BaseDataSets(base_dir=args.root_path, split="train", num=None, transform=transforms.Compose( [RandomGenerator(args.patch_size)])) db_val = BaseDataSets(base_dir=args.root_path, split="val") total_slices = len(db_train) labeled_slice = patients_to_slices(args.root_path, args.labeled_num) print("Total silices is: {}, labeled slices is: {}".format( total_slices, labeled_slice)) labeled_idxs = list(range(0, labeled_slice)) unlabeled_idxs = list(range(labeled_slice, total_slices)) batch_sampler = TwoStreamBatchSampler(labeled_idxs, unlabeled_idxs, batch_size, batch_size - args.labeled_bs) trainloader = DataLoader(db_train, batch_sampler=batch_sampler, num_workers=4, pin_memory=True, worker_init_fn=worker_init_fn) model.train() valloader = DataLoader(db_val, batch_size=1, shuffle=False, num_workers=1) optimizer = optim.SGD(model.parameters(), lr=base_lr, momentum=0.9, weight_decay=0.0001) ce_loss = CrossEntropyLoss() dice_loss = losses.DiceLoss(num_classes) writer = SummaryWriter(snapshot_path + '/log') logging.info("{} iterations per epoch".format(len(trainloader))) iter_num = 0 max_epoch = max_iterations // len(trainloader) + 1 best_performance = 0.0 iterator = tqdm(range(max_epoch), ncols=70) for epoch_num in iterator: for i_batch, sampled_batch in enumerate(trainloader): volume_batch, label_batch = sampled_batch['image'], sampled_batch[ 'label'] volume_batch, label_batch = volume_batch.cuda(), label_batch.cuda() unlabeled_volume_batch = volume_batch[args.labeled_bs:] noise = torch.clamp( torch.randn_like(unlabeled_volume_batch) * 0.1, -0.2, 0.2) ema_inputs = unlabeled_volume_batch + noise outputs = model(volume_batch) outputs_soft = torch.softmax(outputs, dim=1) with torch.no_grad(): ema_output = ema_model(ema_inputs) T = 8 _, _, w, h = unlabeled_volume_batch.shape volume_batch_r = unlabeled_volume_batch.repeat(2, 1, 1, 1) stride = volume_batch_r.shape[0] // 2 preds = torch.zeros([stride * T, num_classes, w, h]).cuda() for i in range(T // 2): ema_inputs = volume_batch_r + \ torch.clamp(torch.randn_like( volume_batch_r) * 0.1, -0.2, 0.2) with torch.no_grad(): preds[2 * stride * i:2 * stride * (i + 1)] = ema_model(ema_inputs) preds = F.softmax(preds, dim=1) preds = preds.reshape(T, stride, num_classes, w, h) preds = torch.mean(preds, dim=0) uncertainty = -1.0 * \ torch.sum(preds*torch.log(preds + 1e-6), dim=1, keepdim=True) loss_ce = ce_loss(outputs[:args.labeled_bs], label_batch[:args.labeled_bs][:].long()) loss_dice = dice_loss(outputs_soft[:args.labeled_bs], label_batch[:args.labeled_bs].unsqueeze(1)) supervised_loss = 0.5 * (loss_dice + loss_ce) consistency_weight = get_current_consistency_weight(iter_num // 150) consistency_dist = losses.softmax_mse_loss( outputs[args.labeled_bs:], ema_output) # (batch, 2, 112,112,80) threshold = (0.75 + 0.25 * ramps.sigmoid_rampup( iter_num, max_iterations)) * np.log(2) mask = (uncertainty < threshold).float() consistency_loss = torch.sum( mask * consistency_dist) / (2 * torch.sum(mask) + 1e-16) loss = supervised_loss + consistency_weight * consistency_loss optimizer.zero_grad() loss.backward() optimizer.step() update_ema_variables(model, ema_model, args.ema_decay, iter_num) lr_ = base_lr * (1.0 - iter_num / max_iterations)**0.9 for param_group in optimizer.param_groups: param_group['lr'] = lr_ iter_num = iter_num + 1 writer.add_scalar('info/lr', lr_, iter_num) writer.add_scalar('info/total_loss', loss, iter_num) writer.add_scalar('info/loss_ce', loss_ce, iter_num) writer.add_scalar('info/loss_dice', loss_dice, iter_num) writer.add_scalar('info/consistency_loss', consistency_loss, iter_num) writer.add_scalar('info/consistency_weight', consistency_weight, iter_num) logging.info( 'iteration %d : loss : %f, loss_ce: %f, loss_dice: %f' % (iter_num, loss.item(), loss_ce.item(), loss_dice.item())) if iter_num % 20 == 0: image = volume_batch[1, 0:1, :, :] writer.add_image('train/Image', image, iter_num) outputs = torch.argmax(torch.softmax(outputs, dim=1), dim=1, keepdim=True) writer.add_image('train/Prediction', outputs[1, ...] * 50, iter_num) labs = label_batch[1, ...].unsqueeze(0) * 50 writer.add_image('train/GroundTruth', labs, iter_num) if iter_num > 0 and iter_num % 200 == 0: model.eval() metric_list = 0.0 for i_batch, sampled_batch in enumerate(valloader): metric_i = test_single_volume(sampled_batch["image"], sampled_batch["label"], model, classes=num_classes) metric_list += np.array(metric_i) metric_list = metric_list / len(db_val) for class_i in range(num_classes - 1): writer.add_scalar('info/val_{}_dice'.format(class_i + 1), metric_list[class_i, 0], iter_num) writer.add_scalar('info/val_{}_hd95'.format(class_i + 1), metric_list[class_i, 1], iter_num) performance = np.mean(metric_list, axis=0)[0] mean_hd95 = np.mean(metric_list, axis=0)[1] writer.add_scalar('info/val_mean_dice', performance, iter_num) writer.add_scalar('info/val_mean_hd95', mean_hd95, iter_num) if performance > best_performance: best_performance = performance save_mode_path = os.path.join( snapshot_path, 'iter_{}_dice_{}.pth'.format( iter_num, round(best_performance, 4))) save_best = os.path.join( snapshot_path, '{}_best_model.pth'.format(args.model)) torch.save(model.state_dict(), save_mode_path) torch.save(model.state_dict(), save_best) logging.info('iteration %d : mean_dice : %f mean_hd95 : %f' % (iter_num, performance, mean_hd95)) model.train() if iter_num % 3000 == 0: save_mode_path = os.path.join(snapshot_path, 'iter_' + str(iter_num) + '.pth') torch.save(model.state_dict(), save_mode_path) logging.info("save model to {}".format(save_mode_path)) if iter_num >= max_iterations: break if iter_num >= max_iterations: iterator.close() break writer.close() return "Training Finished!"
activations, outputs = model(inputs) with torch.no_grad(): ema_activations, ema_output = ema_model(ema_inputs) ## calculate the loss loss_classification = loss_fn(outputs[:labeled_bs], label_batch[:labeled_bs]) loss = loss_classification ## MT loss (have no effect in the beginneing) if args.ema_consistency == 1: consistency_weight = get_current_consistency_weight(epoch) consistency_dist = torch.sum( losses.softmax_mse_loss( outputs, ema_output)) / batch_size #/ dataset.N_CLASSES consistency_loss = consistency_weight * consistency_dist # consistency_relation_dist = torch.sum(losses.relation_mse_loss_cam(activations, ema_activations, model, label_batch)) / batch_size consistency_relation_dist = torch.sum( losses.relation_mse_loss(activations, ema_activations)) / batch_size consistency_relation_loss = consistency_weight * consistency_relation_dist * args.consistency_relation_weight else: consistency_loss = 0.0 consistency_relation_loss = 0.0 consistency_weight = 0.0 consistency_dist = 0.0 #+ consistency_loss