def eval_one_epoch(stack, model, criterion, device, val_writer):
    num_batches = VALIDATION_DATASET.get_num_batches(BATCH_SIZE_VAL)

    # Reset metrics
    loss_sum = 0
    confusion_matrix = metric.ConfusionMatrix(num_classes)

    log_string(str(datetime.now()))

    log_string("---- EPOCH %03d EVALUATION ----" % (EPOCH_CNT))

    update_progress(0)

    for batch_idx in range(num_batches):
        progress = float(batch_idx) / float(num_batches)
        update_progress(round(progress, 2))
        batch_data, batch_label, batch_weights = stack.get()

        # Get predicted labels
        points_tensor = torch.from_numpy(batch_data).to(
            device, dtype=torch.float32)  # (B, sample_num, 3)
        batch_label_tensor = torch.from_numpy(batch_label).to(
            device, dtype=torch.long)  # (B, sample_num)
        model = model.eval()
        with torch.no_grad():
            points_prob = run_model(
                model, points_tensor, PARAMS,
                MODEL_NAME)  # (B, sample_num, num_classes), (B, sample_num, 3)
            batch_loss = criterion(points_prob, batch_label_tensor)
        _, points_pred = torch.max(points_prob, dim=2)  # (B, sample_num)

        # Update metrics
        pred_val = points_pred.cpu().numpy()
        for i in range(len(pred_val)):
            for j in range(len(pred_val[i])):
                confusion_matrix.increment(batch_label[i][j], pred_val[i][j])
        loss_sum += batch_loss.cpu().numpy()

    update_progress(1)

    iou_per_class = confusion_matrix.get_per_class_ious()

    # Display metrics
    log_string("mean loss: %f" % (loss_sum / float(num_batches)))
    log_string("Overall accuracy : %f" % (confusion_matrix.get_accuracy()))
    log_string("Average IoU : %f" % (confusion_matrix.get_mean_iou()))
    val_writer.add_scalar("%s mean loss" % DATASET_NAME,
                          loss_sum / float(num_batches), EPOCH_CNT)
    val_writer.add_scalar("%s overall accuracy" % DATASET_NAME,
                          confusion_matrix.get_accuracy(), EPOCH_CNT)
    val_writer.add_scalar("%s average IoU" % DATASET_NAME,
                          confusion_matrix.get_mean_iou(), EPOCH_CNT)
    iou_per_class = [0] + iou_per_class  # label 0 is ignored
    for i in range(1, num_classes):
        log_string("IoU of %s : %f" %
                   (VALIDATION_DATASET.labels_names[i], iou_per_class[i]))

    return confusion_matrix.get_mean_iou()
Exemple #2
0
def train_one_epoch(sess, ops, train_writer, stack):
    """Train one epoch
    
    Args:
        sess (tf.Session): the session to evaluate Tensors and ops
        ops (dict of tf.Operation): contain multiple operation mapped with with strings
        train_writer (tf.FileSaver): enable to log the training with TensorBoard
        compute_class_iou (bool): it takes time to compute the iou per class, so you can disable it here
    """

    is_training = True

    num_batches = TRAIN_DATASET.get_num_batches(BATCH_SIZE)

    log_string(str(datetime.now()))
    update_progress(0)
    # Reset metrics
    loss_sum = 0
    confusion_matrix = metric.ConfusionMatrix(NUM_CLASSES)

    # Train over num_batches batches
    for batch_idx in range(num_batches):
        # Refill more batches if empty
        progress = float(batch_idx) / float(num_batches)
        update_progress(round(progress, 2))
        batch_data, batch_label, batch_weights = stack.get()

        # Get predicted labels
        feed_dict = {
            ops['pointclouds_pl']: batch_data,
            ops['labels_pl']: batch_label,
            ops['smpws_pl']: batch_weights,
            ops['is_training_pl']: is_training,
        }
        summary, step, _, loss_val, pred_val, _ = sess.run([
            ops['merged'], ops['step'], ops['train_op'], ops['loss'],
            ops['pred'], ops['update_iou']
        ],
                                                           feed_dict=feed_dict)
        train_writer.add_summary(summary, step)
        pred_val = np.argmax(pred_val, 2)

        # Update metrics
        for i in range(len(pred_val)):
            for j in range(len(pred_val[i])):
                confusion_matrix.count_predicted(batch_label[i][j],
                                                 pred_val[i][j])
        loss_sum += loss_val
    update_progress(1)
    log_string('mean loss: %f' % (loss_sum / float(num_batches)))
    log_string("Overall accuracy : %f" %
               (confusion_matrix.get_overall_accuracy()))
    log_string("Average IoU : %f" %
               (confusion_matrix.get_average_intersection_union()))
    iou_per_class = confusion_matrix.get_intersection_union_per_class()
    for i in range(1, NUM_CLASSES):
        log_string("IoU of %s : %f" %
                   (TRAIN_DATASET.labels_names[i], iou_per_class[i]))
def train_one_epoch(stack, scheduler, model, criterion, device, train_writer):
    global EPOCH_CNT
    num_batches = TRAIN_DATASET.get_num_batches(BATCH_SIZE_TRAIN)

    log_string(str(datetime.now()))
    update_progress(0)
    # Reset metrics
    loss_sum = 0
    confusion_matrix = metric.ConfusionMatrix(num_classes)

    # Train over num_batches batches
    for batch_idx in range(num_batches):
        # Refill more batches if empty
        progress = float(batch_idx) / float(num_batches)
        update_progress(round(progress, 2))
        batch_data, batch_label, batch_weights = stack.get()

        # Get predicted labels
        points_tensor = torch.from_numpy(batch_data).to(
            device, dtype=torch.float32)  # (B, sample_num, 3)
        batch_label_tensor = torch.from_numpy(batch_label).to(
            device, dtype=torch.long)  # (B, sample_num)
        scheduler.optimizer.zero_grad()
        model = model.train()
        points_prob = run_model(
            model, points_tensor, PARAMS,
            MODEL_NAME)  # (B, sample_num, num_classes), (B, sample_num, 3)
        batch_loss = criterion(points_prob, batch_label_tensor)
        _, points_pred = torch.max(points_prob, dim=2)  # (B, sample_num)
        batch_loss.backward()
        scheduler.optimizer.step()
        scheduler.step()

        # Update metrics
        pred_val = points_pred.cpu().numpy()
        for i in range(len(pred_val)):
            for j in range(len(pred_val[i])):
                confusion_matrix.increment(batch_label[i][j], pred_val[i][j])
        loss_sum += batch_loss.cpu().detach().numpy()
    update_progress(1)
    EPOCH_CNT += 1
    log_string("mean loss: %f" % (loss_sum / float(num_batches)))
    log_string("Overall accuracy : %f" % (confusion_matrix.get_accuracy()))
    log_string("Average IoU : %f" % (confusion_matrix.get_mean_iou()))
    train_writer.add_scalar("%s mean loss" % DATASET_NAME,
                            loss_sum / float(num_batches), EPOCH_CNT)
    train_writer.add_scalar("%s overall accuracy" % DATASET_NAME,
                            confusion_matrix.get_accuracy(), EPOCH_CNT)
    train_writer.add_scalar("%s average IoU" % DATASET_NAME,
                            confusion_matrix.get_mean_iou(), EPOCH_CNT)
    iou_per_class = confusion_matrix.get_per_class_ious()
    iou_per_class = [0] + iou_per_class  # label 0 is ignored
    for i in range(1, num_classes):
        log_string("IoU of %s : %f" %
                   (TRAIN_DATASET.labels_names[i], iou_per_class[i]))
Exemple #4
0
def eval_one_epoch(sess, ops, test_writer):
    """Evaluate one epoch
    
    Args:
        sess (tf.Session): the session to evaluate tensors and operations
        ops (tf.Operation): the dict of operations
        test_writer (tf.summary.FileWriter): enable to log the evaluation on TensorBoard
    
    Returns:
        float: the overall accuracy computed on the test set
    """

    global EPOCH_CNT

    is_training = False
    test_idxs = np.arange(0, len(TEST_DATASET))
    num_batches = len(TEST_DATASET) / BATCH_SIZE

    # Reset metrics
    loss_sum = 0
    confusion_matrix = metric.ConfusionMatrix(NUM_CLASSES)

    log_string(str(datetime.now()))
    log_string('---- EPOCH %03d EVALUATION ----' % (EPOCH_CNT))

    for batch_idx in range(num_batches):
        start_idx = batch_idx * BATCH_SIZE
        end_idx = (batch_idx + 1) * BATCH_SIZE
        batch_data, batch_label, batch_smpw = get_batch(
            TEST_DATASET, test_idxs, start_idx, end_idx)

        aug_data = provider.rotate_point_cloud(batch_data)

        feed_dict = {
            ops['pointclouds_pl']: aug_data,
            ops['labels_pl']: batch_label,
            ops['smpws_pl']: batch_smpw,
            ops['is_training_pl']: is_training
        }
        summary, step, loss_val, pred_val = sess.run(
            [ops['merged'], ops['step'], ops['loss'], ops['pred']],
            feed_dict=feed_dict)

        test_writer.add_summary(summary, step)
        pred_val = np.argmax(pred_val, 2)  # BxN

        # Update metrics
        for i in range(len(pred_val)):
            for j in range(len(pred_val[i])):
                confusion_matrix.count_predicted(batch_label[i][j],
                                                 pred_val[i][j])
        loss_sum += loss_val

    iou_per_class = confusion_matrix.get_intersection_union_per_class()

    # Display metrics
    log_string('eval mean loss: %f' % (loss_sum / float(num_batches)))
    log_string("Overall accuracy : %f" %
               (confusion_matrix.get_overall_accuracy()))
    log_string("Average IoU : %f" %
               (confusion_matrix.get_average_intersection_union()))
    for i in range(1, NUM_CLASSES):
        log_string("IoU of %s : %f" % (data.LABELS_NAMES[i], iou_per_class[i]))

    EPOCH_CNT += 5
    return confusion_matrix.get_overall_accuracy()
Exemple #5
0
def train_one_epoch(sess, ops, train_writer):
    """Train one epoch
    
    Args:
        sess (tf.Session): the session to evaluate Tensors and ops
        ops (dict of tf.Operation): contain multiple operation mapped with with strings
        train_writer (tf.FileSaver): enable to log the training with TensorBoard
    """

    is_training = True

    # Shuffle train samples
    train_idxs = np.arange(0, len(TRAIN_DATASET))
    np.random.shuffle(train_idxs)
    num_batches = len(TRAIN_DATASET) / BATCH_SIZE

    log_string(str(datetime.now()))

    # Reset metrics
    loss_sum = 0
    confusion_matrix = metric.ConfusionMatrix(NUM_CLASSES)

    # Train over num_batches batches
    for batch_idx in range(num_batches):
        start_idx = batch_idx * BATCH_SIZE
        end_idx = (batch_idx + 1) * BATCH_SIZE
        batch_data, batch_label, batch_smpw = get_batch(
            TRAIN_DATASET, train_idxs, start_idx, end_idx, True, INPUT_DROPOUT)

        # Augment batched point clouds by z-axis rotation
        aug_data = provider.rotate_point_cloud(batch_data)

        # Get predicted labels
        feed_dict = {
            ops['pointclouds_pl']: aug_data,
            ops['labels_pl']: batch_label,
            ops['smpws_pl']: batch_smpw,
            ops['is_training_pl']: is_training,
        }
        summary, step, _, loss_val, pred_val, _ = sess.run([
            ops['merged'], ops['step'], ops['train_op'], ops['loss'],
            ops['pred'], ops['update_iou']
        ],
                                                           feed_dict=feed_dict)
        train_writer.add_summary(summary, step)
        pred_val = np.argmax(pred_val, 2)

        # Update metrics
        for i in range(len(pred_val)):
            for j in range(len(pred_val[i])):
                confusion_matrix.count_predicted(batch_label[i][j],
                                                 pred_val[i][j])
        loss_sum += loss_val

        # Every 10 batches, print metrics and reset them
        if (batch_idx + 1) % 10 == 0:
            log_string(' -- %03d / %03d --' % (batch_idx + 1, num_batches))
            log_string('mean loss: %f' % (loss_sum / 10))
            log_string("Overall accuracy : %f" %
                       (confusion_matrix.get_overall_accuracy()))
            log_string("Average IoU : %f" %
                       (confusion_matrix.get_average_intersection_union()))
            iou_per_class = confusion_matrix.get_intersection_union_per_class()
            for i in range(1, NUM_CLASSES):
                log_string("IoU of %s : %f" %
                           (data.LABELS_NAMES[i], iou_per_class[i]))
            loss_sum = 0
            confusion_matrix = metric.ConfusionMatrix(NUM_CLASSES)
def eval_one_epoch(sess, ops, test_writer, stack):
    """Evaluate one epoch
    
    Args:
        sess (tf.Session): the session to evaluate tensors and operations
        ops (tf.Operation): the dict of operations
        test_writer (tf.summary.FileWriter): enable to log the evaluation on TensorBoard
    
    Returns:
        float: the overall accuracy computed on the test set
    """

    global EPOCH_CNT

    is_training = False

    num_batches = TEST_DATASET.get_num_batches(BATCH_SIZE)

    # Reset metrics
    loss_sum = 0
    confusion_matrix = metric.ConfusionMatrix(NUM_CLASSES)

    log_string(str(datetime.now()))

    log_string('---- EPOCH %03d EVALUATION ----'%(EPOCH_CNT))

    update_progress(0)

    for batch_idx in range(num_batches):
        progress = float(batch_idx)/float(num_batches)
        update_progress(round(progress,2))
        batch_data, batch_label, batch_weights = stack.get()
        
        feed_dict = {ops['pointclouds_pl']: batch_data,
                     ops['labels_pl']: batch_label,
                     ops['smpws_pl']: batch_weights,
                     ops['is_training_pl']: is_training}
        summary, step, loss_val, pred_val = sess.run([ops['merged'], ops['step'],
                                                      ops['loss'], ops['pred']], feed_dict=feed_dict)

        test_writer.add_summary(summary, step)
        pred_val = np.argmax(pred_val, 2) # BxN
        
        # Update metrics
        for i in range(len(pred_val)):
            for j in range(len(pred_val[i])):
                confusion_matrix.count_predicted(batch_label[i][j], pred_val[i][j])
        loss_sum += loss_val
    
    update_progress(1)

    iou_per_class = confusion_matrix.get_intersection_union_per_class()

    # Display metrics
    log_string('mean loss: %f' % (loss_sum / float(num_batches)))
    log_string("Overall accuracy : %f" %(confusion_matrix.get_overall_accuracy()))
    log_string("Average IoU : %f" %(confusion_matrix.get_average_intersection_union()))
    for i in range(1,NUM_CLASSES):
        log_string("IoU of %s : %f" % (TEST_DATASET.labels_names[i],iou_per_class[i]))
    
    EPOCH_CNT += 5
    return confusion_matrix.get_overall_accuracy()
def train_one_epoch(sess, ops, train_writer):
    """Train one epoch
    
    Args:
        sess (tf.Session): the session to evaluate Tensors and ops
        ops (dict of tf.Operation): contain multiple operation mapped with with strings
        train_writer (tf.FileSaver): enable to log the training with TensorBoard
    """

    is_training = True

    num_batches = int(TRAIN_DATASET.get_total_num_points() /
                      (BATCH_SIZE * NUM_POINT)) * 2

    log_string(str(datetime.now()))

    # Reset metrics
    loss_sum = 0
    confusion_matrix = metric.ConfusionMatrix(NUM_CLASSES)

    # Train over num_batches batches
    for batch_idx in range(num_batches):

        batch_data, batch_label, batch_weights = TRAIN_DATASET.next_batch(
            BATCH_SIZE, True, False)

        # Get predicted labels
        feed_dict = {
            ops['pointclouds_pl']: batch_data,
            ops['labels_pl']: batch_label,
            ops['smpws_pl']: batch_weights,
            ops['is_training_pl']: is_training,
        }
        summary, step, _, loss_val, pred_val, _ = sess.run([
            ops['merged'], ops['step'], ops['train_op'], ops['loss'],
            ops['pred'], ops['update_iou']
        ],
                                                           feed_dict=feed_dict)
        train_writer.add_summary(summary, step)
        pred_val = np.argmax(pred_val, 2)

        # Update metrics
        for i in range(len(pred_val)):
            for j in range(len(pred_val[i])):
                confusion_matrix.count_predicted(batch_label[i][j],
                                                 pred_val[i][j])
        loss_sum += loss_val

        # Every 10 batches, print metrics and reset them
        if (batch_idx + 1) % 10 == 0:
            log_string(' -- %03d / %03d --' % (batch_idx + 1, num_batches))
            log_string('mean loss: %f' % (loss_sum / 10))
            log_string("Overall accuracy : %f" %
                       (confusion_matrix.get_overall_accuracy()))
            log_string("Average IoU : %f" %
                       (confusion_matrix.get_average_intersection_union()))
            iou_per_class = confusion_matrix.get_intersection_union_per_class()
            for i in range(1, NUM_CLASSES):
                log_string("IoU of %s : %f" %
                           (data.LABELS_NAMES[i], iou_per_class[i]))
            loss_sum = 0
            confusion_matrix = metric.ConfusionMatrix(NUM_CLASSES)