Exemple #1
0
def main(args):
    # transform
    train_transform = transforms.Compose([
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
    ])
    val_transform = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
    ])
    # data
    train_loader = data_config(args.dataset_dir, args.batch_size, 'train',
                               args.max_length, train_transform)
    #val_loader = data_config(args.dataset_dir, 64, 'val', args.max_length, val_transform)

    # loss
    compute_loss = Loss(args)
    nn.DataParallel(compute_loss).cuda()

    # network
    network, optimizer = network_config(args, 'train',
                                        compute_loss.parameters(), args.resume,
                                        args.model_path)

    # lr_scheduler
    scheduler = lr_scheduler(optimizer, args)
    for epoch in range(args.num_epoches - args.start_epoch):
        # train for one epoch
        train_loss, train_time, image_precision, text_precision = train(
            args.start_epoch + epoch, train_loader, network, optimizer,
            compute_loss, args)
        # evaluate on validation set
        is_best = False
        print('Train done for epoch-{}'.format(args.start_epoch + epoch))
        state = {
            'network': network.state_dict(),
            'optimizer': optimizer.state_dict(),
            'W': compute_loss.W,
            'epoch': args.start_epoch + epoch
        }
        #         'ac': [ac_top1_i2t, ac_top10_i2t, ac_top1_t2i, ac_top10_t2i],
        #         'best_ac': [ac_i2t_best, ac_t2i_best]}
        save_checkpoint(state, epoch, args.checkpoint_dir, is_best)
        logging.info(
            'Epoch:  [{}|{}], train_time: {:.3f}, train_loss: {:.3f}'.format(
                args.start_epoch + epoch, args.num_epoches, train_time,
                train_loss))
        logging.info('image_precision: {:.3f}, text_precision: {:.3f}'.format(
            image_precision, text_precision))
        adjust_lr(optimizer, args.start_epoch + epoch, args)
        scheduler.step()
        for param in optimizer.param_groups:
            print('lr:{}'.format(param['lr']))
            break
    logging.info('Train done')
    logging.info(args.checkpoint_dir)
    logging.info(args.log_dir)
Exemple #2
0
def main(args):

    train_loader = get_data_loader(args.image_dir, args.anno_dir,
                                   args.batch_size, 'train', args.max_length)

    # loss
    compute_loss = Loss(args)
    nn.DataParallel(compute_loss)

    # network
    network = get_network(args, args.resume, args.model_path)
    optimizer = get_optimizer(args, network, compute_loss.parameters(),
                              args.resume, args.model_path)

    # lr_scheduler
    scheduler = lr_scheduler(optimizer, args)

    for epoch in range(args.num_epoches - args.start_epoch):
        # train for one epoch
        train_loss, train_time = train(args.start_epoch + epoch, train_loader,
                                       network, optimizer, compute_loss, args)
        # evaluate on validation set
        print('Train done for epoch-{}'.format(args.start_epoch + epoch))

        state = {
            'network': network.state_dict(),
            'optimizer': optimizer.state_dict(),
            'W': compute_loss.W,
            'epoch': args.start_epoch + epoch
        }

        save_checkpoint(state, epoch, args.checkpoint_dir, False)

        adjust_lr(optimizer, args.start_epoch + epoch, args)
        scheduler.step()

        for param in optimizer.param_groups:
            print('lr:{}'.format(param['lr']))
            break
def main(args):

    # transform
    normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                     std=[0.229, 0.224, 0.225])

    train_transform = transforms.Compose([
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        normalize,
    ])
    val_transform = transforms.Compose([
        transforms.ToTensor(),
        normalize
    ])

    test_transform = transforms.Compose([
        transforms.ToTensor(),
        normalize
    ])



    cap_transform = None

    # data
    train_loader = data_config(args.image_dir, args.anno_dir, args.batch_size, 'train', 100, train_transform, cap_transform=cap_transform)

    test_loader = data_config(args.image_dir, args.anno_dir, 64, 'test', 100, test_transform)
    unique_image = get_image_unique(args.image_dir, args.anno_dir, 64, 'test', 100, test_transform)  
    
    # loss
    compute_loss = Loss(args)
    nn.DataParallel(compute_loss).cuda()

    # network
    network, optimizer = network_config(args, 'train', compute_loss.parameters(), args.resume, args.model_path)

    # lr_scheduler
    scheduler = WarmupMultiStepLR(optimizer, (20, 25, 35), 0.1, 0.01, 10, 'linear')

    
    ac_t2i_top1_best = 0.0
    best_epoch = 0
    for epoch in range(args.num_epoches - args.start_epoch):
        network.train()
        # train for one epoch
        train_loss, train_time, image_precision, text_precision = train(args.start_epoch + epoch, train_loader, network, optimizer, compute_loss, args)

        # evaluate on validation set
        is_best = False
        print('Train done for epoch-{}'.format(args.start_epoch + epoch))

        logging.info('Epoch:  [{}|{}], train_time: {:.3f}, train_loss: {:.3f}'.format(args.start_epoch + epoch, args.num_epoches, train_time, train_loss))
        logging.info('image_precision: {:.3f}, text_precision: {:.3f}'.format(image_precision, text_precision))
        scheduler.step()
        for param in optimizer.param_groups:
            print('lr:{}'.format(param['lr']))

        if epoch >= 0:
            ac_top1_i2t, ac_top5_i2t, ac_top10_i2t, ac_top1_t2i, ac_top5_t2i , ac_top10_t2i, test_time = test(test_loader, network, args, unique_image)
        
            state = {'network': network.state_dict(), 'optimizer': optimizer.state_dict(), 'W': compute_loss.W, 'epoch': args.start_epoch + epoch}
           
            if ac_top1_t2i > ac_t2i_top1_best:
                best_epoch = epoch
                ac_t2i_top1_best = ac_top1_t2i
                save_checkpoint(state, epoch, args.checkpoint_dir, is_best)
            
            logging.info('epoch:{}'.format(epoch))
            logging.info('top1_t2i: {:.3f}, top5_t2i: {:.3f}, top10_t2i: {:.3f}, top1_i2t: {:.3f}, top5_i2t: {:.3f}, top10_i2t: {:.3f}'.format(
            ac_top1_t2i, ac_top5_t2i, ac_top10_t2i, ac_top1_i2t, ac_top5_i2t, ac_top10_i2t))
       

    logging.info('Best epoch:{}'.format(best_epoch))
    logging.info('Train done')
    logging.info(args.checkpoint_dir)
    logging.info(args.log_dir)