def generate(self, target_class): initial_learning_rate = 6 created_image = np.uint8(np.random.uniform(0, 255, (224, 224, 3))) for i in range(1, 150): # Process image and return variable self.processed_image = preprocess_image(created_image, False) # Define optimizer for the image optimizer = SGD([self.processed_image], lr=initial_learning_rate) # Forward output = self.model(self.processed_image) # Target specific class class_loss = -output[0, target_class] print('Iteration:', str(i), 'Loss', "{0:.2f}".format(class_loss.data.numpy())) # Zero grads self.model.zero_grad() # Backward class_loss.backward() # Update image optimizer.step() # Recreate image created_image = recreate_image(self.processed_image) if i % 10 == 0: # Save image im_path = os.path.join( self.dst, 'c_specific_iteration_' + str(i) + '.jpg') save_image(created_image, im_path) return self.processed_image
def after_step(self, rbm, trainer, i): it = i + 1 save = it in self.expt.save_after display = it in self.expt.show_after if save: if self.expt.save_particles: storage.dump(trainer.fantasy_particles, self.expt.pcd_particles_file(it)) storage.dump(rbm, self.expt.rbm_file(it)) if hasattr(trainer, 'avg_rbm'): storage.dump(trainer.avg_rbm, self.expt.avg_rbm_file(it)) storage.dump(time.time() - self.t0, self.expt.time_file(it)) if 'particles' in self.subset and (save or display): fig = rbm_vis.show_particles(rbm, trainer.fantasy_particles, self.expt.dataset, display=display, figtitle='PCD particles ({} updates)'.format(it)) if display: pylab.gcf().canvas.draw() if save: misc.save_image(fig, self.expt.pcd_particles_figure_file(it)) if 'gibbs_chains' in self.subset and (save or display): fig = diagnostics.show_chains(rbm, trainer.fantasy_particles, self.expt.dataset, display=display, figtitle='Gibbs chains (iteration {})'.format(it)) if save: misc.save_image(fig, self.expt.gibbs_chains_figure_file(it)) if 'objective' in self.subset: self.log_prob_tracker.update(rbm, trainer.fantasy_particles) if display: pylab.gcf().canvas.draw()
def dream(self, filename): created_image = Image.open(filename).convert('RGB') # Process image and return variable self.processed_image = preprocess_image(created_image, True) # Define optimizer for the image # Earlier layers need higher learning rates to visualize whereas layer layers need less optimizer = SGD([self.processed_image], lr=12, weight_decay=1e-4) for i in range(1, 251): optimizer.zero_grad() # Assign create image to a variable to move forward in the model x = self.processed_image for index, layer in enumerate(self.features): # Forward x = layer(x) # Only need to forward until we the selected layer is reached if index == self.selected_layer: break # Loss function is the mean of the output of the selected layer/filter # We try to minimize the mean of the output of that specific filter loss = -torch.mean(self.conv_output) print('Iteration:', str(i), 'Loss:', "{0:.2f}".format(loss.data.numpy())) # Backward loss.backward() # Update image optimizer.step() # Recreate image self.created_image = recreate_image(self.processed_image) # Save image every 20 iteration if i % 10 == 0: print(created_image.size) im_path = os.path.join(self.dst, 'ddream_l' + str(self.selected_layer) + \ '_f' + str(self.selected_filter) + '_iter' + str(i) + '.jpg') save_image(self.created_image, im_path)
def save_figures(expt): """Save visualizations of the particles.""" if isinstance(expt, str): expt = get_experiment(expt) tr_expt = get_training_expt(expt) storage.ensure_directory(expt.figures_dir()) for it in tr_expt.save_after: for avg in AVG_VALS: print 'Iteration', it try: rbm = load_rbm(expt, it, avg) except: continue final_states = storage.load(expt.final_states_file(it, avg)) gibbs_states = storage.load(expt.gibbs_states_file(it, avg)) fig = rbm_vis.show_particles(rbm, final_states, expt.dataset) misc.save_image(fig, expt.final_states_figure_file(it, avg)) fig = rbm_vis.show_particles(rbm, gibbs_states, expt.dataset) misc.save_image(fig, expt.gibbs_states_figure_file(it, avg)) print_log_probs(expt, open(expt.log_probs_text_file(), 'w'))
def generate_inverted_image_specific_layer(self, input_image, img_size, target_layer=3): # Generate a random image which we will optimize opt_img = Variable(1e-1 * torch.randn(1, 3, img_size, img_size), requires_grad=True) # Define optimizer for previously created image optimizer = SGD([opt_img], lr=1e4, momentum=0.9) # Get the output from the model after a forward pass until target_layer # with the input image (real image, NOT the randomly generated one) input_image_layer_output = \ self.get_output_from_specific_layer(input_image, target_layer) # Alpha regularization parametrs # Parameter alpha, which is actually sixth norm alpha_reg_alpha = 6 # The multiplier, lambda alpha alpha_reg_lambda = 1e-7 # Total variation regularization parameters # Parameter beta, which is actually second norm tv_reg_beta = 2 # The multiplier, lambda beta tv_reg_lambda = 1e-8 for i in range(201): optimizer.zero_grad() # Get the output from the model after a forward pass until target_layer # with the generated image (randomly generated one, NOT the real image) output = self.get_output_from_specific_layer(opt_img, target_layer) # Calculate euclidian loss euc_loss = 1e-1 * self.euclidian_loss( input_image_layer_output.detach(), output) # Calculate alpha regularization reg_alpha = alpha_reg_lambda * self.alpha_norm( opt_img, alpha_reg_alpha) # Calculate total variation regularization reg_total_variation = tv_reg_lambda * self.total_variation_norm( opt_img, tv_reg_beta) # Sum all to optimize loss = euc_loss + reg_alpha + reg_total_variation # Step loss.backward() optimizer.step() # Generate image every 5 iterations if i % 5 == 0: print('Iteration:', str(i), 'Loss:', loss.data.numpy()) recreated_im = recreate_image(opt_img) im_path = os.path.join(self.dst, 'Inv_Image_Layer_' + str(target_layer) + \ '_Iteration_' + str(i) + '.jpg') save_image(recreated_im, im_path) # Reduce learning rate every 40 iterations if i % 40 == 0: for param_group in optimizer.param_groups: param_group['lr'] *= 1 / 10
def after_step(self, rbm, trainer, i): it = i + 1 save = it in self.expt.save_after display = it in self.expt.show_after if save: if self.expt.save_particles: storage.dump(trainer.fantasy_particles, self.expt.pcd_particles_file(it)) storage.dump(rbm, self.expt.rbm_file(it)) if hasattr(trainer, 'avg_rbm'): storage.dump(trainer.avg_rbm, self.expt.avg_rbm_file(it)) storage.dump(time.time() - self.t0, self.expt.time_file(it)) if 'particles' in self.subset and (save or display): fig = rbm_vis.show_particles( rbm, trainer.fantasy_particles, self.expt.dataset, display=display, figtitle='PCD particles ({} updates)'.format(it)) if display: pylab.gcf().canvas.draw() if save: misc.save_image(fig, self.expt.pcd_particles_figure_file(it)) if 'gibbs_chains' in self.subset and (save or display): fig = diagnostics.show_chains( rbm, trainer.fantasy_particles, self.expt.dataset, display=display, figtitle='Gibbs chains (iteration {})'.format(it)) if save: misc.save_image(fig, self.expt.gibbs_chains_figure_file(it)) if 'objective' in self.subset: self.log_prob_tracker.update(rbm, trainer.fantasy_particles) if display: pylab.gcf().canvas.draw()
def visualise_layer_without_hooks(self): # Process image and return variable # Generate a random image random_image = np.uint8(np.random.uniform(150, 180, (224, 224, 3))) # Process image and return variable processed_image = preprocess_image(random_image, False) # Define optimizer for the image optimizer = Adam([processed_image], lr=0.1, weight_decay=1e-6) for i in range(1, 31): optimizer.zero_grad() # Assign create image to a variable to move forward in the model x = processed_image for index, layer in enumerate(self.features): # Forward pass layer by layer x = layer(x) if index == self.selected_layer: # Only need to forward until the selected layer is reached # Now, x is the output of the selected layer break # Here, we get the specific filter from the output of the convolution operation # x is a tensor of shape 1x512x28x28.(For layer 17) # So there are 512 unique filter outputs # Following line selects a filter from 512 filters so self.conv_output will become # a tensor of shape 28x28 self.conv_output = x[0, self.selected_filter] # Loss function is the mean of the output of the selected layer/filter # We try to minimize the mean of the output of that specific filter loss = -torch.mean(self.conv_output) print('Iteration:', str(i), 'Loss:', "{0:.2f}".format(loss.data.numpy())) # Backward loss.backward() # Update image optimizer.step() # Recreate image self.created_image = recreate_image(processed_image) # Save image if i % 5 == 0: filename = os.path.join(self.path, 'layer_visual_%d_%d_iter_%d.jpg' + self.selected_layer, self.selected_filter, i) save_image(self.created_image, filename)
def visualise_layer_with_hooks(self): ''' img ''' # Hook the selected layer self.hook_layer() # Generate a random image random_image = np.uint8(np.random.uniform(150, 180, (224, 224, 3))) # Process image and return variable processed_image = preprocess_image(random_image, False) # Define optimizer for the image optimizer = Adam([processed_image], lr=0.1, weight_decay=1e-6) for i in range(1, 31): optimizer.zero_grad() # Assign create image to a variable to move forward in the model x = processed_image for index, layer in enumerate(self.features): # Forward pass layer by layer # x is not used after this point because it is only needed to trigger # the forward hook function x = layer(x) # Only need to forward until the selected layer is reached if index == self.selected_layer: # (forward hook function triggered) break # Loss function is the mean of the output of the selected layer/filter # We try to minimize the mean of the output of that specific filter loss = -torch.mean(self.conv_output) print('Iteration:', str(i), 'Loss:', "{0:.2f}".format(loss.data.numpy())) # Backward loss.backward() # Update image optimizer.step() # Recreate image self.created_image = recreate_image(processed_image) # Save image if i % 5 == 0: filename = os.path.join(self.path, 'layer_visual_%d_%d_iter_%d.jpg' % (self.selected_layer, self.selected_filter, i)) save_image(self.created_image, filename)
def _save_image(self, image, path, epoch): directory = os.path.join(self.args.save_path, 'images', 'epoch_{}'.format(epoch)) save_path = os.path.join(directory, os.path.basename(path)) mkdir(directory) save_image(image.data.cpu(), save_path)