def generate(self, target_class):
     initial_learning_rate = 6
     created_image = np.uint8(np.random.uniform(0, 255, (224, 224, 3)))
     for i in range(1, 150):
         # Process image and return variable
         self.processed_image = preprocess_image(created_image, False)
         # Define optimizer for the image
         optimizer = SGD([self.processed_image], lr=initial_learning_rate)
         # Forward
         output = self.model(self.processed_image)
         # Target specific class
         class_loss = -output[0, target_class]
         print('Iteration:', str(i), 'Loss',
               "{0:.2f}".format(class_loss.data.numpy()))
         # Zero grads
         self.model.zero_grad()
         # Backward
         class_loss.backward()
         # Update image
         optimizer.step()
         # Recreate image
         created_image = recreate_image(self.processed_image)
         if i % 10 == 0:
             # Save image
             im_path = os.path.join(
                 self.dst, 'c_specific_iteration_' + str(i) + '.jpg')
             save_image(created_image, im_path)
     return self.processed_image
Exemple #2
0
    def after_step(self, rbm, trainer, i):
        it = i + 1

        save = it in self.expt.save_after
        display = it in self.expt.show_after

        if save:
            if self.expt.save_particles:
                storage.dump(trainer.fantasy_particles, self.expt.pcd_particles_file(it))
            storage.dump(rbm, self.expt.rbm_file(it))
            if hasattr(trainer, 'avg_rbm'):
                storage.dump(trainer.avg_rbm, self.expt.avg_rbm_file(it))
            storage.dump(time.time() - self.t0, self.expt.time_file(it))

        if 'particles' in self.subset and (save or display):
            fig = rbm_vis.show_particles(rbm, trainer.fantasy_particles, self.expt.dataset, display=display,
                                         figtitle='PCD particles ({} updates)'.format(it))
            if display:
                pylab.gcf().canvas.draw()
            if save:
                misc.save_image(fig, self.expt.pcd_particles_figure_file(it))

        if 'gibbs_chains' in self.subset and (save or display):
            fig = diagnostics.show_chains(rbm, trainer.fantasy_particles, self.expt.dataset, display=display,
                                          figtitle='Gibbs chains (iteration {})'.format(it))
            if save:
                misc.save_image(fig, self.expt.gibbs_chains_figure_file(it))

        if 'objective' in self.subset:
            self.log_prob_tracker.update(rbm, trainer.fantasy_particles)

        if display:
            pylab.gcf().canvas.draw()
Exemple #3
0
 def dream(self, filename):
     created_image = Image.open(filename).convert('RGB')
     # Process image and return variable
     self.processed_image = preprocess_image(created_image, True)
     # Define optimizer for the image
     # Earlier layers need higher learning rates to visualize whereas layer layers need less
     optimizer = SGD([self.processed_image], lr=12, weight_decay=1e-4)
     for i in range(1, 251):
         optimizer.zero_grad()
         # Assign create image to a variable to move forward in the model
         x = self.processed_image
         for index, layer in enumerate(self.features):
             # Forward
             x = layer(x)
             # Only need to forward until we the selected layer is reached
             if index == self.selected_layer:
                 break
         # Loss function is the mean of the output of the selected layer/filter
         # We try to minimize the mean of the output of that specific filter
         loss = -torch.mean(self.conv_output)
         print('Iteration:', str(i), 'Loss:',
               "{0:.2f}".format(loss.data.numpy()))
         # Backward
         loss.backward()
         # Update image
         optimizer.step()
         # Recreate image
         self.created_image = recreate_image(self.processed_image)
         # Save image every 20 iteration
         if i % 10 == 0:
             print(created_image.size)
             im_path = os.path.join(self.dst, 'ddream_l' + str(self.selected_layer) + \
                 '_f' + str(self.selected_filter) + '_iter' + str(i) + '.jpg')
             save_image(self.created_image, im_path)
Exemple #4
0
def save_figures(expt):
    """Save visualizations of the particles."""
    if isinstance(expt, str):
        expt = get_experiment(expt)

    tr_expt = get_training_expt(expt)

    storage.ensure_directory(expt.figures_dir())

    for it in tr_expt.save_after:
        for avg in AVG_VALS:
            print 'Iteration', it
            try:
                rbm = load_rbm(expt, it, avg)
            except:
                continue
            final_states = storage.load(expt.final_states_file(it, avg))
            gibbs_states = storage.load(expt.gibbs_states_file(it, avg))

            fig = rbm_vis.show_particles(rbm, final_states, expt.dataset)
            misc.save_image(fig, expt.final_states_figure_file(it, avg))

            fig = rbm_vis.show_particles(rbm, gibbs_states, expt.dataset)
            misc.save_image(fig, expt.gibbs_states_figure_file(it, avg))

    print_log_probs(expt, open(expt.log_probs_text_file(), 'w'))
    def generate_inverted_image_specific_layer(self,
                                               input_image,
                                               img_size,
                                               target_layer=3):
        # Generate a random image which we will optimize
        opt_img = Variable(1e-1 * torch.randn(1, 3, img_size, img_size),
                           requires_grad=True)
        # Define optimizer for previously created image
        optimizer = SGD([opt_img], lr=1e4, momentum=0.9)
        # Get the output from the model after a forward pass until target_layer
        # with the input image (real image, NOT the randomly generated one)
        input_image_layer_output = \
            self.get_output_from_specific_layer(input_image, target_layer)

        # Alpha regularization parametrs
        # Parameter alpha, which is actually sixth norm
        alpha_reg_alpha = 6
        # The multiplier, lambda alpha
        alpha_reg_lambda = 1e-7

        # Total variation regularization parameters
        # Parameter beta, which is actually second norm
        tv_reg_beta = 2
        # The multiplier, lambda beta
        tv_reg_lambda = 1e-8

        for i in range(201):
            optimizer.zero_grad()
            # Get the output from the model after a forward pass until target_layer
            # with the generated image (randomly generated one, NOT the real image)
            output = self.get_output_from_specific_layer(opt_img, target_layer)
            # Calculate euclidian loss
            euc_loss = 1e-1 * self.euclidian_loss(
                input_image_layer_output.detach(), output)
            # Calculate alpha regularization
            reg_alpha = alpha_reg_lambda * self.alpha_norm(
                opt_img, alpha_reg_alpha)
            # Calculate total variation regularization
            reg_total_variation = tv_reg_lambda * self.total_variation_norm(
                opt_img, tv_reg_beta)
            # Sum all to optimize
            loss = euc_loss + reg_alpha + reg_total_variation
            # Step
            loss.backward()
            optimizer.step()
            # Generate image every 5 iterations
            if i % 5 == 0:
                print('Iteration:', str(i), 'Loss:', loss.data.numpy())
                recreated_im = recreate_image(opt_img)
                im_path = os.path.join(self.dst, 'Inv_Image_Layer_' + str(target_layer) + \
                    '_Iteration_' + str(i) + '.jpg')
                save_image(recreated_im, im_path)

            # Reduce learning rate every 40 iterations
            if i % 40 == 0:
                for param_group in optimizer.param_groups:
                    param_group['lr'] *= 1 / 10
Exemple #6
0
    def after_step(self, rbm, trainer, i):
        it = i + 1

        save = it in self.expt.save_after
        display = it in self.expt.show_after

        if save:
            if self.expt.save_particles:
                storage.dump(trainer.fantasy_particles,
                             self.expt.pcd_particles_file(it))
            storage.dump(rbm, self.expt.rbm_file(it))
            if hasattr(trainer, 'avg_rbm'):
                storage.dump(trainer.avg_rbm, self.expt.avg_rbm_file(it))
            storage.dump(time.time() - self.t0, self.expt.time_file(it))

        if 'particles' in self.subset and (save or display):
            fig = rbm_vis.show_particles(
                rbm,
                trainer.fantasy_particles,
                self.expt.dataset,
                display=display,
                figtitle='PCD particles ({} updates)'.format(it))
            if display:
                pylab.gcf().canvas.draw()
            if save:
                misc.save_image(fig, self.expt.pcd_particles_figure_file(it))

        if 'gibbs_chains' in self.subset and (save or display):
            fig = diagnostics.show_chains(
                rbm,
                trainer.fantasy_particles,
                self.expt.dataset,
                display=display,
                figtitle='Gibbs chains (iteration {})'.format(it))
            if save:
                misc.save_image(fig, self.expt.gibbs_chains_figure_file(it))

        if 'objective' in self.subset:
            self.log_prob_tracker.update(rbm, trainer.fantasy_particles)

        if display:
            pylab.gcf().canvas.draw()
 def visualise_layer_without_hooks(self):
     # Process image and return variable
     # Generate a random image
     random_image = np.uint8(np.random.uniform(150, 180, (224, 224, 3)))
     # Process image and return variable
     processed_image = preprocess_image(random_image, False)
     # Define optimizer for the image
     optimizer = Adam([processed_image], lr=0.1, weight_decay=1e-6)
     for i in range(1, 31):
         optimizer.zero_grad()
         # Assign create image to a variable to move forward in the model
         x = processed_image
         for index, layer in enumerate(self.features):
             # Forward pass layer by layer
             x = layer(x)
             if index == self.selected_layer:
                 # Only need to forward until the selected layer is reached
                 # Now, x is the output of the selected layer
                 break
         # Here, we get the specific filter from the output of the convolution operation
         # x is a tensor of shape 1x512x28x28.(For layer 17)
         # So there are 512 unique filter outputs
         # Following line selects a filter from 512 filters so self.conv_output will become
         # a tensor of shape 28x28
         self.conv_output = x[0, self.selected_filter]
         # Loss function is the mean of the output of the selected layer/filter
         # We try to minimize the mean of the output of that specific filter
         loss = -torch.mean(self.conv_output)
         print('Iteration:', str(i), 'Loss:', "{0:.2f}".format(loss.data.numpy()))
         # Backward
         loss.backward()
         # Update image
         optimizer.step()
         # Recreate image
         self.created_image = recreate_image(processed_image)
         # Save image
         if i % 5 == 0:
             filename = os.path.join(self.path, 'layer_visual_%d_%d_iter_%d.jpg' + self.selected_layer, self.selected_filter, i)
             save_image(self.created_image, filename)
 def visualise_layer_with_hooks(self):
     '''
     img
     '''
     # Hook the selected layer
     self.hook_layer()
     # Generate a random image
     random_image = np.uint8(np.random.uniform(150, 180, (224, 224, 3)))
     # Process image and return variable
     processed_image = preprocess_image(random_image, False)
     # Define optimizer for the image
     optimizer = Adam([processed_image], lr=0.1, weight_decay=1e-6)
     for i in range(1, 31):
         optimizer.zero_grad()
         # Assign create image to a variable to move forward in the model
         x = processed_image
         for index, layer in enumerate(self.features):
             # Forward pass layer by layer
             # x is not used after this point because it is only needed to trigger
             # the forward hook function
             x = layer(x)
             # Only need to forward until the selected layer is reached
             if index == self.selected_layer:
                 # (forward hook function triggered)
                 break
         # Loss function is the mean of the output of the selected layer/filter
         # We try to minimize the mean of the output of that specific filter
         loss = -torch.mean(self.conv_output)
         print('Iteration:', str(i), 'Loss:', "{0:.2f}".format(loss.data.numpy()))
         # Backward
         loss.backward()
         # Update image
         optimizer.step()
         # Recreate image
         self.created_image = recreate_image(processed_image)
         # Save image
         if i % 5 == 0:
             filename = os.path.join(self.path, 'layer_visual_%d_%d_iter_%d.jpg' % (self.selected_layer, self.selected_filter, i))
             save_image(self.created_image, filename)
Exemple #9
0
 def _save_image(self, image, path, epoch):
     directory = os.path.join(self.args.save_path, 'images',
                              'epoch_{}'.format(epoch))
     save_path = os.path.join(directory, os.path.basename(path))
     mkdir(directory)
     save_image(image.data.cpu(), save_path)