def create_bn_aux_model(self, node_id): """ bn_aux_model: 1. It is like "train", as it uses training data. 2. It is like "train", as only the "train" mode of bn returns sm/siv (sm/siv: the mean and inverse *std* of the current batch). 3. It is like "val/test", as it does not backprop and does not update. 4. Note: "rm/riv" is fully irrelevant in bn_aux_model. """ self._model = model_builder_video.ModelBuilder( name='{}_bn_aux'.format(cfg.MODEL.MODEL_NAME), train=True, use_cudnn=True, cudnn_exhaustive_search=True, ws_nbytes_limit=(cfg.CUDNN_WORKSPACE_LIMIT * 1024 * 1024), split=cfg.TRAIN.DATA_TYPE, use_mem_cache=False, # We don't cache here. force_fw_only=True, ) self._model.build_model(node_id=node_id) workspace.CreateNet(self._model.net) # self._model.start_data_loader() misc.save_net_proto(self._model.net) self._find_bn_layers() self._clean_and_reset_buffer() return
def create_wrapper(is_train, lfb=None): """ a simpler wrapper that creates the elements for train/test models """ if is_train: suffix = '_train' split = cfg.TRAIN.DATA_TYPE else: suffix = '_test' split = cfg.TEST.DATA_TYPE model = model_builder_video.ModelBuilder( train=is_train, use_cudnn=True, cudnn_exhaustive_search=True, ws_nbytes_limit=(cfg.CUDNN_WORKSPACE_LIMIT * 1024 * 1024), split=split, ) model.build_model(suffix=suffix, lfb=lfb) if cfg.PROF_DAG: model.net.Proto().type = 'prof_dag' else: model.net.Proto().type = 'dag' workspace.RunNetOnce(model.param_init_net) workspace.CreateNet(model.net) model.start_data_loader() timer = Timer() meter = metrics.MetricsCalculator( model=model, split=split, video_idx_to_name=model.input_db._video_idx_to_name, total_num_boxes=(model.input_db._num_boxes_used if cfg.DATASET in ['ava', 'avabox'] else None)) misc.save_net_proto(model.net) misc.save_net_proto(model.param_init_net) return model, timer, meter
def create_wrapper(is_train): """ a simpler wrapper that creates the elements for train/test models """ if is_train: suffix = '_train' split = cfg.TRAIN.DATA_TYPE use_mem_cache = cfg.TRAIN.MEM_CACHE else: # is test suffix = '_test'.format(cfg.MODEL.MODEL_NAME) split = cfg.TEST.DATA_TYPE use_mem_cache = True # we always cache for test model = model_builder_video.ModelBuilder( name=cfg.MODEL.MODEL_NAME + suffix, train=is_train, use_cudnn=True, cudnn_exhaustive_search=True, ws_nbytes_limit=(cfg.CUDNN_WORKSPACE_LIMIT * 1024 * 1024), split=split, use_mem_cache=use_mem_cache, ) model.build_model() if cfg.PROF_DAG: model.net.Proto().type = 'prof_dag' else: model.net.Proto().type = 'dag' workspace.RunNetOnce(model.param_init_net) workspace.CreateNet(model.net) # model.start_data_loader() timer = Timer() meter = metrics.MetricsCalculator(model=model, split=split) misc.save_net_proto(model.net) misc.save_net_proto(model.param_init_net) return model, timer, meter
def test_net_one_section(): """ To save test-time memory, we perform multi-clip test in multiple "sections": e.g., 10-clip test can be done in 2 sections of 5-clip test """ timer = Timer() results = [] seen_inds = defaultdict(int) logger.warning('Testing started...') # for monitoring cluster jobs test_model = model_builder_video.ModelBuilder(name='{}_test'.format( cfg.MODEL.MODEL_NAME), train=False, use_cudnn=True, cudnn_exhaustive_search=True, split=cfg.TEST.DATA_TYPE) test_model.build_model() if cfg.PROF_DAG: test_model.net.Proto().type = 'prof_dag' else: test_model.net.Proto().type = 'dag' workspace.RunNetOnce(test_model.param_init_net) workspace.CreateNet(test_model.net) misc.save_net_proto(test_model.net) misc.save_net_proto(test_model.param_init_net) total_test_net_iters = int( math.ceil( float(cfg.TEST.DATASET_SIZE * cfg.TEST.NUM_TEST_CLIPS) / cfg.TEST.BATCH_SIZE)) if cfg.TEST.PARAMS_FILE: checkpoints.load_model_from_params_file_for_test( test_model, cfg.TEST.PARAMS_FILE) else: raise Exception('No params files specified for testing model.') for test_iter in range(total_test_net_iters): timer.tic() workspace.RunNet(test_model.net.Proto().name) timer.toc() if test_iter == 0: misc.print_net(test_model) os.system('nvidia-smi') test_debug = False if test_debug is True: save_path = 'temp_save/' data_blob = workspace.FetchBlob('gpu_0/data') label_blob = workspace.FetchBlob('gpu_0/labels') print(label_blob) data_blob = data_blob * cfg.MODEL.STD + cfg.MODEL.MEAN for i in range(data_blob.shape[0]): for j in range(4): temp_img = data_blob[i, :, j, :, :] temp_img = temp_img.transpose([1, 2, 0]) temp_img = temp_img.astype(np.uint8) fname = save_path + 'ori_' + str(test_iter) \ + '_' + str(i) + '_' + str(j) + '.jpg' cv2.imwrite(fname, temp_img) """ When testing, we assume all samples in the same gpu are of the same id """ video_ids_list = [] # for logging for gpu_id in range(cfg.NUM_GPUS): prefix = 'gpu_{}/'.format(gpu_id) softmax_gpu = workspace.FetchBlob(prefix + cfg.TEST.OUTPUT_NAME) softmax_gpu = softmax_gpu.reshape((softmax_gpu.shape[0], -1)) video_id_gpu = workspace.FetchBlob(prefix + 'labels') for i in range(len(video_id_gpu)): seen_inds[video_id_gpu[i]] += 1 video_ids_list.append(video_id_gpu[0]) # print(video_id_gpu) # collect results for i in range(softmax_gpu.shape[0]): probs = softmax_gpu[i].tolist() vid = video_id_gpu[i] if seen_inds[vid] > cfg.TEST.NUM_TEST_CLIPS: logger.warning('Video id {} have been seen. Skip.'.format( vid, )) continue save_pairs = [vid, probs] results.append(save_pairs) # ---- log eta = timer.average_time * (total_test_net_iters - test_iter - 1) eta = str(datetime.timedelta(seconds=int(eta))) logger.info(('{}/{} iter ({}/{} videos):' + ' Time: {:.3f} (ETA: {}). ID: {}').format( test_iter, total_test_net_iters, len(seen_inds), cfg.TEST.DATASET_SIZE, timer.diff, eta, video_ids_list, )) return results
def test_one_crop(lfb=None, suffix='', shift=None): """Test one crop.""" workspace.GlobalInit(['caffe2', '--caffe2_log_level=0']) np.random.seed(cfg.RNG_SEED) cfg.AVA.FULL_EVAL = True if lfb is None and cfg.LFB.ENABLED: print_cfg() lfb = get_lfb(cfg.LFB.MODEL_PARAMS_FILE, is_train=False) print_cfg() workspace.ResetWorkspace() logger.info("Done ResetWorkspace...") timer = Timer() logger.warning('Testing started...') # for monitoring cluster jobs if shift is None: shift = cfg.TEST.CROP_SHIFT test_model = model_builder_video.ModelBuilder(train=False, use_cudnn=True, cudnn_exhaustive_search=True, split=cfg.TEST.DATA_TYPE) test_model.build_model(lfb=lfb, suffix=suffix, shift=shift) if cfg.PROF_DAG: test_model.net.Proto().type = 'prof_dag' else: test_model.net.Proto().type = 'dag' workspace.RunNetOnce(test_model.param_init_net) workspace.CreateNet(test_model.net) misc.save_net_proto(test_model.net) misc.save_net_proto(test_model.param_init_net) total_test_net_iters = misc.get_total_test_iters(test_model) test_model.start_data_loader() test_meter = metrics.MetricsCalculator( model=test_model, split=cfg.TEST.DATA_TYPE, video_idx_to_name=test_model.input_db._video_idx_to_name, total_num_boxes=(test_model.input_db._num_boxes_used if cfg.DATASET in ['ava', 'avabox'] else None)) if cfg.TEST.PARAMS_FILE: checkpoints.load_model_from_params_file_for_test( test_model, cfg.TEST.PARAMS_FILE) else: raise Exception('No params files specified for testing model.') begin_time = time.time() for test_iter in range(total_test_net_iters): timer.tic() workspace.RunNet(test_model.net.Proto().name) timer.toc() if test_iter == 0: misc.print_net(test_model) os.system('nvidia-smi') misc.show_flops_params(test_model) test_meter.calculate_and_log_all_metrics_test(test_iter, timer, total_test_net_iters, suffix) logger.info('TTTTTTTIME: {}'.format(time.time() - begin_time)) test_meter.finalize_metrics(name=get_test_name(shift)) test_meter.log_final_metrics(test_iter, total_test_net_iters) test_model.shutdown_data_loader()
def test_net_one_section(full_label_fname=None, store_vis=False): """ To save test-time memory, we perform multi-clip test in multiple "sections": e.g., 10-clip test can be done in 2 sections of 5-clip test Args: full_label_id: If set uses this LMDB file, and assumes the full labels are being provided store_vis: Store visualization of what the model learned, CAM style stuff """ timer = Timer() results = [] seen_inds = defaultdict(int) logger.warning('Testing started...') # for monitoring cluster jobs test_model = model_builder_video.ModelBuilder( name='{}_test'.format(cfg.MODEL.MODEL_NAME), train=False, use_cudnn=True, cudnn_exhaustive_search=True, split=cfg.TEST.DATA_TYPE, split_dir_name=(full_label_fname if full_label_fname is not None else cfg.TEST.DATA_TYPE)) test_model.build_model() if cfg.PROF_DAG: test_model.net.Proto().type = 'prof_dag' else: test_model.net.Proto().type = 'dag' workspace.RunNetOnce(test_model.param_init_net) workspace.CreateNet(test_model.net) misc.save_net_proto(test_model.net) misc.save_net_proto(test_model.param_init_net) total_test_net_iters = int( math.ceil( float(cfg.TEST.DATASET_SIZE * cfg.TEST.NUM_TEST_CLIPS) / cfg.TEST.BATCH_SIZE)) if cfg.TEST.PARAMS_FILE: checkpoints.load_model_from_params_file_for_test( test_model, cfg.TEST.PARAMS_FILE) else: cfg.TEST.PARAMS_FILE = checkpoints.get_checkpoint_resume_file() checkpoints.load_model_from_params_file_for_test( test_model, cfg.TEST.PARAMS_FILE) logging.info('No params file specified for testing but found the last ' 'trained one {}'.format(cfg.TEST.PARAMS_FILE)) # raise Exception('No params files specified for testing model.') for test_iter in range(total_test_net_iters): timer.tic() workspace.RunNet(test_model.net.Proto().name) timer.toc() if test_iter == 0: misc.print_net(test_model) os.system('nvidia-smi') test_debug = False if test_debug is True: save_path = 'temp_save/' data_blob = workspace.FetchBlob('gpu_0/data') label_blob = workspace.FetchBlob('gpu_0/labels') print(label_blob) data_blob = data_blob * cfg.MODEL.STD + cfg.MODEL.MEAN for i in range(data_blob.shape[0]): for j in range(4): temp_img = data_blob[i, :, j, :, :] temp_img = temp_img.transpose([1, 2, 0]) temp_img = temp_img.astype(np.uint8) fname = save_path + 'ori_' + str(test_iter) \ + '_' + str(i) + '_' + str(j) + '.jpg' cv2.imwrite(fname, temp_img) """ When testing, we assume all samples in the same gpu are of the same id. ^ This comment is from the original code. Anyway not sure why it should be the case.. we are extracting out the labels for each element of the batch anyway... Where is this assumption being used? ^ Checked with Xiaolong, ignore this. """ video_ids_list = [] # for logging for gpu_id in range(cfg.NUM_GPUS): prefix = 'gpu_{}/'.format(gpu_id) # Note that this is called softmax_gpu, but could also be # sigmoid. softmax_gpu = workspace.FetchBlob(prefix + 'activation') softmax_gpu = softmax_gpu.reshape((softmax_gpu.shape[0], -1)) # Mean the fc7 over time and space, to get a compact feature # This has already been passed through AvgPool op, but might not # have averaged all the way fc7 = np.mean(workspace.FetchBlob(prefix + 'fc7'), axis=(-1, -2, -3)) # IMP! The label blob at test time contains the "index" to the # video, and not the video class. This is how the lmdb gen scripts # are set up. @xiaolonw needs it to get predictions for each video # and then re-reads the label file to get the actual class labels # to compute the test accuracy. video_id_gpu = workspace.FetchBlob(prefix + 'labels') temporal_crop_id = [None] * len(video_id_gpu) spatial_crop_id = [None] * len(video_id_gpu) if full_label_fname is not None: video_id_gpu, temporal_crop_id, spatial_crop_id = ( label_id_to_parts(video_id_gpu)) for i in range(len(video_id_gpu)): seen_inds[video_id_gpu[i]] += 1 video_ids_list.append(video_id_gpu[0]) # print(video_id_gpu) if store_vis: save_dir = osp.join(cfg.CHECKPOINT.DIR, 'vis_{}'.format(full_label_fname)) data_blob = workspace.FetchBlob(prefix + 'data') label_blob = workspace.FetchBlob(prefix + 'labels') fc7_full = workspace.FetchBlob(prefix + 'fc7_beforeAvg') data_blob = data_blob * cfg.MODEL.STD + cfg.MODEL.MEAN for i in range(data_blob.shape[0]): if temporal_crop_id[i] != 0 or spatial_crop_id[i] != 1: # Only visualizing the first center clip continue gen_store_vis(frames=data_blob[i], fc7_feats=fc7_full[i], outfpath=osp.join(save_dir, str(video_id_gpu[i]))) # collect results for i in range(softmax_gpu.shape[0]): probs = softmax_gpu[i].tolist() vid = video_id_gpu[i] if seen_inds[vid] > cfg.TEST.NUM_TEST_CLIPS: logger.warning('Video id {} have been seen. Skip.'.format( vid, )) continue save_pairs = [ vid, probs, temporal_crop_id[i], spatial_crop_id[i], fc7[i] ] results.append(save_pairs) # ---- log eta = timer.average_time * (total_test_net_iters - test_iter - 1) eta = str(datetime.timedelta(seconds=int(eta))) logger.info(('{}/{} iter ({}/{} videos):' + ' Time: {:.3f} (ETA: {}). ID: {}').format( test_iter, total_test_net_iters, len(seen_inds), cfg.TEST.DATASET_SIZE, timer.diff, eta, video_ids_list, )) return results