def validate(val_loader,
             net,
             criterion,
             optim,
             epoch,
             calc_metrics=True,
             dump_assets=False,
             dump_all_images=False):
    """
    Run validation for one epoch

    :val_loader: data loader for validation
    :net: the network
    :criterion: loss fn
    :optimizer: optimizer
    :epoch: current epoch
    :calc_metrics: calculate validation score
    :dump_assets: dump attention prediction(s) images
    :dump_all_images: dump all images, not just N
    """
    val_time = time.perf_counter()
    dumper = ImageDumper(val_len=len(val_loader),
                         dump_all_images=dump_all_images,
                         dump_assets=dump_assets,
                         dump_for_auto_labelling=args.dump_for_auto_labelling,
                         dump_for_submission=args.dump_for_submission,
                         rank=rank)

    net.eval()
    val_loss = AverageMeter()
    iou_acc = 0
    for val_idx, data in enumerate(val_loader):
        input_images, labels, img_names, _ = data
        if args.dump_for_auto_labelling or args.dump_for_submission:
            submit_fn = '{}.png'.format(img_names[0])
            if val_idx % 20 == 0:
                logx.msg(
                    f'validating[Iter: {val_idx + 1} / {len(val_loader)}]')
            if os.path.exists(os.path.join(dumper.save_dir, submit_fn)):
                continue

        # Run network
        assets, _iou_acc = \
            eval_minibatch(data, net, criterion, val_loss, calc_metrics,
                          args, val_idx)

        iou_acc += _iou_acc

        input_images, labels, img_names, _ = data

        if optim.comm.rank == 0:
            dumper.dump(
                {
                    'gt_images': labels,
                    'input_images': input_images,
                    'img_names': img_names,
                    'assets': assets
                }, val_idx)

        if val_idx > 5 and args.test_mode:
            break

        if val_idx % 2 == 0 and optim.comm.rank == 0:
            logx.msg(f'validating[Iter: {val_idx + 1} / {len(val_loader)}]')

    # average the loss value
    val_loss_tens = torch.tensor(val_loss.val)
    optim.comm.Allreduce(MPI.IN_PLACE, val_loss_tens, MPI.SUM)
    val_loss_tens = val_loss_tens.to(torch.float)
    val_loss_tens /= float(optim.comm.size)
    val_loss.val = val_loss_tens.item()
    # sum up the iou_acc
    optim.comm.Allreduce(MPI.IN_PLACE, iou_acc, MPI.SUM)

    # was_best = False
    if calc_metrics:
        # was_best = eval_metrics(iou_acc, args, net, optim, val_loss, epoch)
        _, mean_iu = eval_metrics(iou_acc, args, net, optim, val_loss, epoch)

    optim.comm.bcast(mean_iu, root=0)
    # was_best = optim.comm.bcast(was_best, root=0)
    #
    # # Write out a summary html page and tensorboard image table
    # if not args.dump_for_auto_labelling and not args.dump_for_submission and optim.comm.rank == 0:
    #     dumper.write_summaries(was_best)
    return val_loss.val, mean_iu, time.perf_counter() - val_time
def validate(val_loader, net, criterion, optim, epoch,
             calc_metrics=True,
             dump_assets=False,
             dump_all_images=False):
    """
    Run validation for one epoch

    :val_loader: data loader for validation
    :net: the network
    :criterion: loss fn
    :optimizer: optimizer
    :epoch: current epoch
    :calc_metrics: calculate validation score
    :dump_assets: dump attention prediction(s) images
    :dump_all_images: dump all images, not just N
    """
    dumper = ImageDumper(val_len=len(val_loader),
                         dump_all_images=dump_all_images,
                         dump_assets=dump_assets,
                         dump_for_auto_labelling=args.dump_for_auto_labelling,
                         dump_for_submission=args.dump_for_submission)

    net.eval()
    val_loss = AverageMeter()
    iou_acc = 0

    for val_idx, data in enumerate(val_loader):
        input_images, labels, img_names, _ = data 
        if args.dump_for_auto_labelling or args.dump_for_submission:
            submit_fn = '{}.png'.format(img_names[0])
            if val_idx % 20 == 0:
                logx.msg(f'validating[Iter: {val_idx + 1} / {len(val_loader)}]')
            if os.path.exists(os.path.join(dumper.save_dir, submit_fn)):
                continue

        # Run network
        assets, _iou_acc = \
            eval_minibatch(data, net, criterion, val_loss, calc_metrics,
                          args, val_idx)

        iou_acc += _iou_acc

        input_images, labels, img_names, _ = data

        dumper.dump({'gt_images': labels,
                     'input_images': input_images,
                     'img_names': img_names,
                     'assets': assets}, val_idx)

        if val_idx > 5 and args.test_mode:
            break

        if val_idx % 20 == 0:
            logx.msg(f'validating[Iter: {val_idx + 1} / {len(val_loader)}]')

    was_best = False
    if calc_metrics:
        was_best = eval_metrics(iou_acc, args, net, optim, val_loss, epoch)

    # Write out a summary html page and tensorboard image table
    if not args.dump_for_auto_labelling and not args.dump_for_submission:
        dumper.write_summaries(was_best)
Exemple #3
0
def validate(val_loader,
             net,
             criterion,
             optim,
             epoch,
             calc_metrics=True,
             dump_assets=False,
             dump_all_images=False):
    """
    Run validation for one epoch
    :val_loader: data loader for validation
    :net: the network
    :criterion: loss fn
    :optimizer: optimizer
    :epoch: current epoch
    :calc_metrics: calculate validation score
    :dump_assets: dump attention prediction(s) images
    :dump_all_images: dump all images, not just N
    """
    dumper = ImageDumper(val_len=len(val_loader),
                         dump_all_images=dump_all_images,
                         dump_assets=dump_assets,
                         dump_for_auto_labelling=args.dump_for_auto_labelling,
                         dump_for_submission=args.dump_for_submission)

    net.eval()
    val_loss = AverageMeter()
    iou_acc = 0
    pred = dict()

    for val_idx, data in enumerate(val_loader):
        input_images, labels, img_names, _ = data
        if args.dump_for_auto_labelling or args.dump_for_submission:
            submit_fn = '{}.png'.format(img_names[0])
            if val_idx % 20 == 0:
                logx.msg(
                    f'validating[Iter: {val_idx + 1} / {len(val_loader)}]')
            if os.path.exists(os.path.join(dumper.save_dir, submit_fn)):
                continue

        # Run network
        assets, _iou_acc = \
            eval_minibatch(data, net, criterion, val_loss, calc_metrics,
                          args, val_idx)

        iou_acc += _iou_acc

        input_images, labels, img_names, _ = data

        if testing:
            prediction = assets['predictions'][0]
            values, counts = np.unique(prediction, return_counts=True)
            pred.update({img_names[0]: dict(zip(values, counts))})
            dumper.dump(
                {
                    'gt_images': labels,
                    'input_images': input_images,
                    'img_names': img_names,
                    'assets': assets
                },
                val_idx,
                testing=True,
                grid=grid)
        else:
            dumper.dump(
                {
                    'gt_images': labels,
                    'input_images': input_images,
                    'img_names': img_names,
                    'assets': assets
                }, val_idx)

        if val_idx > 5 and args.test_mode:
            break

        if val_idx % 20 == 0:
            logx.msg(f'validating[Iter: {val_idx + 1} / {len(val_loader)}]')

    was_best = False
    if calc_metrics:
        was_best = eval_metrics(iou_acc, args, net, optim, val_loss, epoch)

    # Write out a summary html page and tensorboard image table
    if not args.dump_for_auto_labelling and not args.dump_for_submission:
        dumper.write_summaries(was_best)

    if testing:
        df = pd.DataFrame.from_dict(pred, orient='index')
        df_p = df.div(df.sum(axis=1), axis=0)
        df_p.to_csv(os.path.join(dumper.save_dir, 'freq.csv'),
                    mode='a+',
                    header=False)
Exemple #4
0
def validate_topn(val_loader, net, criterion, optim, epoch, args, dump_assets=True,
             dump_all_images=True):
    """
    Find worse case failures ...
    Only single GPU for now
    First pass = calculate TP, FP, FN pixels per image per class
      Take these stats and determine the top20 images to dump per class
    Second pass = dump all those selected images
    """
    assert args.bs_val == 1

    ######################################################################
    # First pass
    ######################################################################
    logx.msg('First pass')
    image_metrics = {}
    dumper = ImageDumper(val_len=len(val_loader),
                         dump_all_images=dump_all_images,
                         dump_assets=dump_assets,
                         dump_for_auto_labelling=args.dump_for_auto_labelling,
                         dump_for_submission=args.dump_for_submission)

    net.eval()
    val_loss = AverageMeter()
    iou_acc = 0

    for val_idx, data in enumerate(val_loader):

        # Run network
        assets, _iou_acc = \
            eval_minibatch(data, net, criterion, val_loss, True, args, val_idx)

        # per-class metrics
        input_images, labels, img_names, _ = data

        fp, fn = metrics_per_image(_iou_acc)
        img_name = img_names[0]
        image_metrics[img_name] = (fp, fn)

        iou_acc += _iou_acc

        if val_idx % 20 == 0:
            logx.msg(f'validating[Iter: {val_idx + 1} / {len(val_loader)}]')

        if val_idx > 5 and args.test_mode:
            break

    eval_metrics(iou_acc, args, net, optim, val_loss, epoch)

    ######################################################################
    # Find top 20 worst failures from a pixel count perspective
    ######################################################################
    from collections import defaultdict
    worst_images = defaultdict(dict)
    class_to_images = defaultdict(dict)
    for classid in range(cfg.DATASET.NUM_CLASSES):
        tbl = {}
        for img_name in image_metrics.keys():
            fp, fn = image_metrics[img_name]
            fp = fp[classid]
            fn = fn[classid]
            tbl[img_name] = fp + fn
        worst = sorted(tbl, key=tbl.get, reverse=True)
        for img_name in worst[:args.dump_topn]:
            fail_pixels = tbl[img_name]
            worst_images[img_name][classid] = fail_pixels
            class_to_images[classid][img_name] = fail_pixels
    msg = str(worst_images)
    logx.msg(msg)

    # write out per-gpu jsons
    # barrier
    # make single table

    ######################################################################
    # 2nd pass
    ######################################################################
    logx.msg('Second pass')
    attn_map = None

    for val_idx, data in enumerate(val_loader):
        in_image, gt_image, img_names, _ = data

        # Only process images that were identified in first pass
        if not args.dump_topn_all and img_names[0] not in worst_images:
            continue

        with torch.no_grad():
            inputs = in_image.cuda()
            inputs = {'images': inputs, 'gts': gt_image}

            if cfg.MODEL.MSCALE:
                #output, attn_map = net(inputs)
                output_dict = net(inputs)
            else:
                output_dict = net(inputs)
        output = output_dict['pred']

        output_data = torch.nn.functional.softmax(output, dim=1).cpu().data
        op = output_data.cpu().detach().numpy()
        np.save(f'{cfg.RESULT_DIR}/output_{epoch}_{val_idx}.npy', op)
        prob_mask, predictions = output_data.max(1)
        #define assests based on the eval_minibatch function
        assets = {}
        for item in output_dict:
            smax = torch.nn.functional.softmax(output_dict[item],dim=1)
            _, pred = smax.data.max(1)
            assets[item] = pred.cpu().numpy()
            #print(assets)

        # this has shape [bs, h, w]
        img_name = img_names[0]
        for classid in worst_images[img_name].keys():

            err_mask = calc_err_mask(predictions.numpy(),
                                     gt_image.numpy(),
                                     cfg.DATASET.NUM_CLASSES,
                                     classid)

            input_images, gt_image, img_names, _ = data
            class_name = cfg.DATASET_INST.trainid_to_name[classid]
            error_pixels = worst_images[img_name][classid]
            logx.msg(f'{img_name} {class_name}: {error_pixels}')
            img_names = [img_name + f'_{class_name}']
            #add assests
            assets['predictions'] = predictions.numpy()
            assets['prob_mask'] = prob_mask
            assets['err_mask'] = err_mask

            to_dump = {'gt_images': gt_image,
                       'input_images': input_images,
                       'predictions': predictions.numpy(),
                       'err_mask': err_mask,
                       'prob_mask': prob_mask,
                       'img_names': img_names,
                       'assets': assets}

            if attn_map is not None:
                to_dump['attn_maps'] = attn_map

            # FIXME!
            # do_dump_images([to_dump])
            #fixed
            dumper.dump(to_dump,val_idx)
    html_fn = os.path.join(args.result_dir, 'best_images',
                           'topn_failures.html')
    from utils.results_page import ResultsPage
    ip = ResultsPage('topn failures', html_fn)
    for classid in class_to_images:
        class_name = cfg.DATASET_INST.trainid_to_name[classid]
        img_dict = class_to_images[classid]
        for img_name in sorted(img_dict, key=img_dict.get, reverse=True):
            fail_pixels = class_to_images[classid][img_name]
            img_cls = f'{img_name}_{class_name}'
            pred_fn = f'{img_cls}_prediction.png'
            gt_fn = f'{img_cls}_gt.png'
            inp_fn = f'{img_cls}_input.png'
            err_fn = f'{img_cls}_err_mask.png'
            prob_fn = f'{img_cls}_prob_mask.png'
            img_label_pairs = [(pred_fn, 'pred'),
                               (gt_fn, 'gt'),
                               (inp_fn, 'input'),
                               (err_fn, 'errors'),
                               (prob_fn, 'prob')]
            ip.add_table(img_label_pairs,
                         table_heading=f'{class_name}-{fail_pixels}')
    ip.write_page()

    return val_loss.avg