Exemple #1
0
def run(params):
    model = None
    if 'load_model_from_dir' in params.__dict__ and params.load_model_from_dir:
        print('Loading the model from an existing dir!')
        model_params = pickle.load(
            open(os.path.join(params.dir_name, 'config.pkl'), 'rb'))
        if 'lookup_table' in params.__dict__:
            model_params.lookup_table = params.lookup_table
        if 'sentiment_dic' in params.__dict__:
            model_params.sentiment_dic = params.sentiment_dic
        model = models.setup(model_params)
        model.load_state_dict(
            torch.load(os.path.join(params.dir_name, 'model')))
        model = model.to(params.device)
    else:
        model = models.setup(params).to(params.device)

    if not ('fine_tune' in params.__dict__ and params.fine_tune == False):
        print('Training the model!')
        train(params, model)
        model = torch.load(params.best_model_file)
        os.remove(params.best_model_file)

    performance_dict = test(model, params)
    performance_str = print_performance(performance_dict, params)
    save_model(model, params, performance_str)

    return performance_dict
def train():
    # Turn on training mode which enables dropout.
    model.train()
    total_loss = 0.
    start_time = time.time()
    ntokens = len(corpus.dictionary)
    if args.model != 'Transformer':
        hidden = model.init_hidden(args.batch_size)
    for batch, i in enumerate(range(0, train_data.size(0) - 1, args.bptt)):
        data, targets = get_batch(train_data, i)
        # Starting each batch, we detach the hidden state from how it was previously produced.
        # If we didn't, the model would try backpropagating all the way to start of the dataset.
        model.zero_grad()
        if args.model == 'Transformer':
            output = model(data)
        else:
            hidden = repackage_hidden(hidden)
            output, hidden = model(data, hidden)
        loss = criterion(output.view(-1, ntokens), targets)
        loss.backward()

        # `clip_grad_norm` helps prevent the exploding gradient problem in RNNs / LSTMs.
        torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip)
        for p in model.parameters():
            p.data.add_(-lr, p.grad.data)

        total_loss += loss.item()

        if batch % args.log_interval == 0 and batch > 0:
            cur_loss = total_loss / args.log_interval
            elapsed = time.time() - start_time
            print(
                '| epoch {:3d} | {:5d}/{:5d} batches | lr {:02.2f} | ms/batch {:5.2f} | '
                'loss {:5.2f} | ppl {:8.2f}'.format(
                    epoch, batch,
                    len(train_data) // args.bptt, lr,
                    elapsed * 1000 / args.log_interval, cur_loss,
                    math.exp(cur_loss)))
            total_loss = 0
            start_time = time.time()
Exemple #3
0
import sys
from utils.model import train

DATASET_NAME = sys.argv[1]

if __name__ == '__main__':
    train(DATASET_NAME)
def main(image_folder, model_folder, building_folder, figure_folder, info_csv,
         stats_json_file, train_results, batch_size, ideal_batch_size, epochs,
         device_name):

    # Configure folders
    image_folder = Path(image_folder)
    model_folder = Path(model_folder)
    building_folder = Path(building_folder)
    stats_json_file = Path(stats_json_file)
    figure_folder = Path(figure_folder)

    # Seed program
    torch.manual_seed(0)

    # retrieve information on buildings
    df = pd.read_csv(info_csv)

    # Get information on a TIF
    n_ch, h, w = get_tif_dims(list(image_folder.iterdir())[0])

    # Get means and stds
    if stats_json_file.exists():
        mean_channels, std_channels = load_stats(stats_json_file)
    else:
        stats = compute_mean_std(image_folder, n_ch)
        mean_channels = stats['mean']
        std_channels = stats["std"]

        with open(stats_json_file, 'w') as file:
            json.dump(stats, file)

    # New dims for image
    pad_h, pad_w = 8 - h % 8, 8 - w % 8

    # Prepare padding
    if pad_h % 2 == 0:
        top_p = bottom_p = pad_h // 2
    else:
        top_p, bottom_p = pad_h // 2, pad_h - (pad_h // 2)

    if pad_w % 2 == 0:
        left_p = right_p = pad_w // 2
    else:
        left_p, right_p = pad_w // 2, pad_w - (pad_w // 2)

    img_pad = (left_p, top_p, right_p, bottom_p)

    # Compose transforms
    transforms = SemSegCompose(img_pad, mean_channels, std_channels, 360)

    # Prepare loading function
    # load_tif_with_mask = partial(
    #     load_tif,
    #     df=df,
    #     mean_vec=mean_channels,
    #     std_vec=std_channels,
    #     building_folder=building_folder,
    #     padding=(pad_h, pad_w))

    # Make dataset
    ds = MulPanSharpenDataset(image_folder,
                              building_folder,
                              df,
                              transforms=transforms)
    # ds = datasets.DatasetFolder(root=image_folder,
    #                             loader=load_tif_with_mask,
    #                             extensions=('.tif',))

    logger.info(f"N° of images: {len(ds)}")
    logger.info(f"Type of img: {ds.label}")

    train_ds, val_ds = split_dataset(ds, train_size=0.8)

    logger.info(f"Train set size: {len(train_ds)}")
    logger.info(f"Val set size: {len(val_ds)}")

    train_dl = DataLoader(train_ds, batch_size=batch_size, shuffle=True)
    val_dl = DataLoader(val_ds, batch_size=batch_size, shuffle=True)
    logger.info(f"N° of iterations per batch (train): {len(train_dl)}")
    logger.info(f"N° of iterations per batch (val): {len(val_dl)}")

    # get model
    logger.info("Getting U-Net model")
    model = torch.hub.load('mateuszbuda/brain-segmentation-pytorch',
                           'unet',
                           in_channels=n_ch,
                           out_channels=2,
                           init_features=32,
                           pretrained=False)

    device = torch.device(device_name)
    logger.info(f"Mounting model on {device}")
    model = model.to(device)

    # Define criterion
    logger.info("Defining cross-entropy loss with 11/89 ratio")
    criterion = nn.CrossEntropyLoss(weight=torch.tensor([.11, .89]))
    criterion = criterion.to(device)

    # Define optimizer
    logger.info("Defining Adam optimizer")
    optimizer = optim.Adam(model.parameters(), lr=1e-3)

    results = train(model, train_dl, val_dl, criterion, optimizer, epochs,
                    device, 2, model_folder, ideal_batch_size // batch_size)

    # Saves model metrics as pickle file
    with open(train_results, "wb") as f:
        pickle.dump(results, f)

    # Saves model
    torch.save(model.state_dict(), model_folder / 'unet_model')
    logger.info(f"Saved model at {model_folder / 'unet_model'}")

    logging.info(f"Metrics evaluation. Check {figure_folder} for results.")

    # Plot metrics
    plot_loss(results, figure_folder)
    logger.info("Loss curve created.")

    plot_last_cm(results, figure_folder)
    logger.info("Last confusion matrix created")

    plot_correct_preds(results, figure_folder)
    logger.info("Evolution of correct predictions created;")

    plot_accuracy(results, figure_folder)
    logger.info("Accuracy plot created.")

    plot_iou(results, figure_folder)
    logger.info("IoU evolution plot created.")

    for i in range(5):
        generate_masks(ds, model, figure_folder, i, 5)
    logger.info("Created model results.")
# importing libraries
from sklearn.metrics import accuracy_score
from utils import read_dataset
from utils import model

# reading data
X_train, X_test, y_train, y_test = read_dataset.read_irisdata("../dataset/Iris.csv")

# number of K
k_value = 2
epoch = 5

'''
method : train()
arguments : number of clusters, features, labels, number of epochs
returns : k number of centroids
'''
centroids = model.train(k_value, X_train, y_train, epoch)

'''
method : predict()
arguments : number of clusters, k centroids, testing set
returns : predicted class label
'''
class_label = model.predict(k_value, centroids, X_test)

# accuracy score
accuracy = accuracy_score(y_test, class_label)
print('Test Accuracy: {}\n\n'.format(accuracy))
Exemple #6
0
def run_nn(in_data_dir, index_file, out_path, run_dir, save_path_name='save', resume=None, batch_size=256, epochs=50, start_epoch=0, lr=1e-4, wd=1e-3, workers=12, no_cuda=True, seed=1):

    # parser = argparse.ArgumentParser()
    # parser.add_argument('path', default='/home/dell/eeg-data-sample/', type=str, help='path to the main dir of the experiment')
    # parser.add_argument('--save', default='', type=str, metavar='PATH', help='save path under the main exp path')
    # parser.add_argument('--resume', default='', type=str, metavar='PATH', help='path to a checkpoint (default: none)')

    # parser.add_argument('--batch-size', type=int, default=256, help='input batch size for training (default: 512)')
    # parser.add_argument('--epochs', type=int, default=50, help='number of epochs to train (default: 100)')
    # parser.add_argument('--start-epoch', default=0, type=int, help='manual epoch number (useful on restarts)')

    # parser.add_argument('--lr', type=float, default=1e-4, help='learning rate (default: 1e-4)')
    # parser.add_argument('--wd', default=1e-3, type=float, help='weight decay (default: 1e-3)')

    # parser.add_argument('--workers', type=int, default=12, help='number of data loading workers (default: 12)')
    # parser.add_argument('--no-cuda', action='store_true', default=False, help='disables CUDA training')
    # parser.add_argument('--seed', type=int, default=1, help='random seed (default: 1)')

    # args = parser.parse_args()
    # if args.save == '':
    #     args.save = os.path.join(os.path.dirname(args.path),
    #                              '1DenseNet_sample_butter')
    # else:
    #     args.save = os.path.join(os.path.dirname(args.path), args.save)

    save_path = os.path.join('./Data/', run_dir, save_path_name)

    torch.manual_seed(seed)
    use_cuda = not no_cuda and torch.cuda.is_available()
    cudnn.benchmark = True if use_cuda else False

    print("===> Loading Datasets...")
    print("\t===> Loading data index info")

    with open(os.path.join('./Data/', index_file), "rb") as f:
        data_splits = pickle.load(f)
    print(len(data_splits['train']))
    
    label_h5_path = os.path.join('./Data/', "labels.h5")
    print(data_splits['train'][0])
    print("\t===> Construct train set")
    train_set = MontagePickleDataset(in_data_dir, list_index=data_splits['train'],
                                     label_h5_path=label_h5_path, transform=None)

    train_loader = DataLoader(dataset=train_set, batch_size=batch_size, shuffle=True, num_workers=workers)

    print("\t===> Construct validation set")
    val_set = MontagePickleDataset(in_data_dir, list_index=data_splits['validation'],
                                   label_h5_path=label_h5_path, transform=None)
    val_loader = DataLoader(dataset=val_set, batch_size=batch_size, shuffle=False, num_workers=workers)
    print("===> Dataset loaded!")

    # class_weights, pseudo_counts = compute_class_weight(data_splits['train'], alpha=0.2)
    # pickle.dump(class_weights, open("/home/dell/eeg-data-sample/class_weights_random_sample_without_zero.pkl", "wb"),
    #             pickle.HIGHEST_PROTOCOL)

    with open(os.path.join('./Data/', "class_weights.pkl"), "rb") as f:
        class_weights = pickle.load(f)
    class_weights = torch.from_numpy(class_weights).float()
    print("===> Class Weights: {}".format(class_weights))

    # Create model
    print('===> Building a Model')
    model = DenseNetClassifier()
    if use_cuda:
        model.cuda()
    print('===> Model built!')
    print('\t===> contains {} trainable params'.format(count_parameters(model)))
    # print('\t===> DenseNet Final Features: {}'.format(model.features.num_features))

    criterion = WeightedKLDivWithLogitsLoss(class_weights)
    if use_cuda:
        criterion.cuda()

    optimizer = optim.Adam(model.parameters(), lr=lr, weight_decay=wd)

    os.makedirs(save_path, exist_ok=True)

    best_val_epoch = 0
    best_val_loss = sys.float_info.max
    best_val_acc = 0.0

    train_losses, train_accuracies = [], []
    val_losses, val_accuracies = [], []

    # optionally resume from a checkpoint
    if resume:
        if os.path.isfile(resume):
            print("===> Loading Checkpoint to Resume '{}'".format(resume))
            checkpoint = torch.load(resume)
            start_epoch = checkpoint['epoch'] + 1
            best_val_epoch = checkpoint['best_epoch']
            best_val_loss = checkpoint['best_valid_loss']
            best_val_acc = checkpoint['best_valid_accuracy']
            model.load_state_dict(checkpoint['state_dict'])
            optimizer.load_state_dict(checkpoint['optimizer'])
            # scheduler.load_state_dict(checkpoint['scheduler'])
            print("\t===> Loaded Checkpoint '{}' (epoch {})".format(resume, checkpoint['epoch']))
        else:
            raise FileNotFoundError("\t====> no checkpoint found at '{}'".format(resume))

    start_time = timer()

    writer = SummaryWriter()
    for epoch in tqdm(range(start_epoch, epochs), desc="Epochs"):

        # Training
        train_loss, train_acc = train(model, train_loader, criterion, optimizer, use_cuda)
        train_losses.append(train_loss)
        train_accuracies.append(train_acc)

        val_loss, val_acc = evaluate(model, val_loader, criterion, use_cuda)
        val_losses.append(val_loss)
        val_accuracies.append(val_acc)

        print("train", train_loss, train_acc)
        print("val", val_loss, val_acc)
        # print("criterion", criterion)

        writer.add_scalar('train_loss', train_loss, epoch)
        writer.add_scalar('train_acc', train_acc, epoch)
        writer.add_scalar('validation_loss', val_loss, epoch)
        writer.add_scalar('validation_acc', val_acc, epoch)
        # writer.add_scalar('learning_rate', lr, epoch)

        is_best = val_loss < best_val_loss
        # is_best = val_acc > best_val_acc
        if is_best:
            best_val_epoch = epoch
            best_val_loss = val_loss
            best_val_acc = val_acc
            print("***IS BEST***")
            with open(os.path.join(save_path, 'train_result.txt'), 'w') as f:
                f.write('Best Validation Epoch: {}\n'.format(epoch))
                f.write('Train Loss: {}\n'.format(train_loss))
                f.write('Train Accuracy: {}\n'.format(train_acc))
                f.write('Validation Loss: {}\n'.format(val_loss))
                f.write('Validation Accuracy: {}\n'.format(val_acc))

            torch.save(model, os.path.join(save_path, 'entire_model.pth'))

        save_checkpoint({
            'epoch': epoch,
            'arch': str(model.__class__.__name__),
            'state_dict': model.state_dict(),
            'best_epoch': best_val_epoch,
            'best_valid_loss': best_val_loss,
            'best_valid_accuracy': best_val_acc,
            'optimizer': optimizer.state_dict(),
            # 'scheduler': scheduler.state_dict(),
        }, is_best, filename=os.path.join(save_path, 'checkpoint.pth.tar'))

        loss_curve, acc_curve = plot_learning_curves(train_losses, val_losses, train_accuracies, val_accuracies)
        loss_curve.savefig(os.path.join(save_path, "loss.eps"), format='eps', bbox_inches='tight')
        acc_curve.savefig(os.path.join(save_path, "acc.eps"), format='eps', bbox_inches='tight')
        plt.close(loss_curve)
        plt.close(acc_curve)

    end_time = timer()
    print("\nDone! - Elapsed Time: {} minutes".format((end_time - start_time) / 60))
    writer.export_scalars_to_json("./all_scalars.json")
    writer.close()