Exemple #1
0
    def extreme_randomize_applied(Train,
                                  New,
                                  treshold,
                                  bootstrap=False,
                                  n_estimators: int = 200,
                                  max_depth: int = 50,
                                  oob_score: bool = False,
                                  class_weight='balanced_subsample',
                                  sampling=None,
                                  label='FRAUDE'):

        yTrain = Train[[label]]
        xTrain = Train
        del xTrain[label]

        if sampling == None:
            pass
        elif sampling == 'ALLKNN':
            xTrain, yTrain = under_sampling(xTrain, yTrain)
        else:
            xTrain, yTrain = over_sampling(xTrain, yTrain, model=sampling)

        min_sample_leaf = round((len(xTrain.index)) * 0.005)
        min_sample_split = min_sample_leaf * 10
        max_features = round(len(xTrain.columns) / 3)

        fileModel = ensemble.ExtraTreesClassifier(
            criterion='entropy',
            bootstrap=bootstrap,
            min_samples_leaf=min_sample_leaf,
            min_samples_split=min_sample_split,
            n_estimators=n_estimators,
            max_depth=max_depth,
            max_features=max_features,
            oob_score=oob_score,
            random_state=531,
            verbose=1,
            class_weight=class_weight,
            n_jobs=1)

        fileModel.fit(
            xTrain.drop(['id_siniestro'], axis=1).values, yTrain.values)
        y_hat_New = fileModel.predict_proba(
            New.drop('id_siniestro', axis=1).values)
        y_hat_New = np.delete(y_hat_New, 0, axis=1)
        df_proba = pd.DataFrame(y_hat_New,
                                columns=['probabilidad'],
                                index=New.index)
        df_proba = pd.concat([New['id_siniestro'], df_proba], axis=1)

        # y_random = (y_hat_New <= treshold).astype(int)
        y_hat_New = (y_hat_New > treshold).astype(int)
        print(y_hat_New)
        df_proba_threshold = pd.DataFrame(y_hat_New,
                                          columns=['Treshold'],
                                          index=New.index)
        print(df_proba_threshold)
        df_proba_conc = pd.concat([df_proba, df_proba_threshold], axis=1)
        print(df_proba_conc)
        return df_proba_conc
    def gb_tunning(Train, Test, sampling=None, scores='f1', label='FRAUDE'):

        Train = pd.concat([Train, Test], axis=0, ignore_index=True)
        yTrain = Train[[label]]
        xTrain = Train
        del xTrain[label]

        if sampling == None:
            pass
        elif sampling == 'ALLKNN':
            xTrain, yTrain = under_sampling(xTrain, yTrain)
        else:
            xTrain, yTrain = over_sampling(xTrain, yTrain, model=sampling)

        min_sample_leaf = round((len(xTrain.index)) * 0.005)
        min_sample_split = min_sample_leaf * 10

        tuned_parameters = [{
            'min_samples_leaf': [min_sample_leaf],
            'min_samples_split': [min_sample_split],
            'n_estimators': list(numpy.arange(200, 500, 100)),
            'max_depth': list(numpy.arange(100, 200, 100)),
            'random_state': [531],
            'verbose': [1],
            'learning_rate': [0.005]
        }]

        fileModel = GridSearchCV(ensemble.GradientBoostingClassifier(),
                                 param_grid=tuned_parameters,
                                 cv=10,
                                 scoring='%s_macro' % scores)

        fileModel.fit(
            xTrain.drop(['id_siniestro'], axis=1).values, yTrain[label].values)

        print("Best parameters set found on development set:")
        print()
        dict_values = fileModel.best_params_
        print(dict_values)
        print()
        print("Grid scores on development set:")
        print()
        means = fileModel.cv_results_['mean_test_score']
        stds = fileModel.cv_results_['std_test_score']
        for mean, std, params in zip(means, stds,
                                     fileModel.cv_results_['params']):
            print("%0.3f (+/-%0.03f) for %r" % (mean, std * 2, params))

        max_depth = int(dict_values['max_depth'])
        n_estimators = int(dict_values['n_estimators'])

        df = pd.DataFrame.from_dict(dict_values, orient="index")
        df.to_csv('final_files\\sup_gb.csv',
                  sep=';',
                  encoding='latin1',
                  index=False)

        return max_depth, n_estimators, sampling, min_sample_leaf, min_sample_split
Exemple #3
0
    def rnc_tunning(Train, Test,  sampling=None, scores='f1', label='FRAUDE'):

        Train = pd.concat([Train, Test], axis=0, ignore_index=True)
        yTrain = Train[[label]]
        xTrain = Train
        del xTrain[label]


        if sampling == None:
            pass
        elif sampling == 'ALLKNN':
            xTrain, yTrain = under_sampling(xTrain, yTrain)
        else:
            xTrain, yTrain = over_sampling(xTrain, yTrain, model=sampling)

        tuned_parameters = [{'radius': list(numpy.arange(1, 101, 1)),
                             'weights': ['distance'], 'algorithm': ['auto'],
                             'leaf_size': list(numpy.arange(30, 301, 30)),
                             'p': [2],
                             'outlier_label': [-1]
                             }]

        fileModel = GridSearchCV(neighbors.RadiusNeighborsClassifier(), param_grid=tuned_parameters, cv=10,
                                 scoring='%s_macro' % scores)


        fileModel.fit(xTrain.drop(['id_siniestro'], axis=1).values, yTrain[label].values)

        print("Best parameters set found on development set:")
        print()
        dict_values = fileModel.best_params_
        print(dict_values)
        print()
        print("Grid scores on development set:")
        print()
        means = fileModel.cv_results_['mean_test_score']
        stds = fileModel.cv_results_['std_test_score']
        for mean, std, params in zip(means, stds, fileModel.cv_results_['params']):
            print("%0.3f (+/-%0.03f) for %r"
                  % (mean, std * 2, params))

        radius = int(dict_values['radius'])
        leaf_size = int(dict_values['leaf_size'])

        df = pd.DataFrame.from_dict(dict_values, orient="index")
        df.to_csv('final_files\\sup_rnc.csv', sep=';', encoding='latin1', index=False)

        return radius, leaf_size, sampling
    def gb_treshold(Train,
                    Valid,
                    Test,
                    comparative,
                    loss='deviance',
                    n_estimators: int = 200,
                    max_depth: int = 50,
                    learning_rate=0.005,
                    sampling=None,
                    label='FRAUDE',
                    beta=2):

        # With beta = 2, we give the same importance to Recall and Precision

        yTrain = Train[[label]]
        xTrain = Train
        del xTrain[label]

        names = Train.columns.values.tolist()
        fileNames = numpy.array(names)

        if sampling == None:
            pass
        elif sampling == 'ALLKNN':
            xTrain, yTrain = under_sampling(xTrain, yTrain)
        else:
            xTrain, yTrain = over_sampling(xTrain, yTrain, model=sampling)

        min_sample_leaf = round((len(xTrain.index)) * 0.005)
        min_sample_split = min_sample_leaf * 10

        fileModel = ensemble.GradientBoostingClassifier(
            loss=loss,
            learning_rate=learning_rate,
            n_estimators=n_estimators,
            subsample=1.0,
            criterion='friedman_mse',
            min_samples_split=min_sample_split,
            min_samples_leaf=min_sample_leaf,
            min_weight_fraction_leaf=0.,
            max_depth=max_depth,
            min_impurity_decrease=0.,
            min_impurity_split=None,
            init=None,
            random_state=531,
            max_features=None,
            verbose=1,
            max_leaf_nodes=None,
            warm_start=False,
            presort='auto')

        fileModel.fit(
            xTrain.drop(['id_siniestro'], axis=1).values, yTrain.values)

        print(
            np.median(
                fileModel.predict_proba(Valid[Valid[label] == 0].drop(
                    [label] + ['id_siniestro'], axis=1).values)))
        print(
            np.median(
                fileModel.predict_proba(Valid[Valid[label] == 1].drop(
                    [label] + ['id_siniestro'], axis=1).values)))

        tresholds = np.linspace(0.1, 1.0, 200)

        scores = []

        y_pred_score = fileModel.predict_proba(
            Valid.drop([label] + ['id_siniestro'], axis=1).values)
        y_pred_score = np.delete(y_pred_score, 0, axis=1)

        print('min', y_pred_score.min())
        print('max', y_pred_score.max())

        for treshold in tresholds:
            y_hat = (y_pred_score > treshold).astype(int)
            y_hat = y_hat.tolist()
            y_hat = [item for sublist in y_hat for item in sublist]

            scores.append([
                recall_score(y_pred=y_hat, y_true=Valid[label].values),
                precision_score(y_pred=y_hat, y_true=Valid[label].values),
                fbeta_score(y_pred=y_hat, y_true=Valid[label].values, beta=2)
            ])

        scores = np.array(scores)
        print('max_scores', scores[:, 2].max(), scores[:, 2].argmax())

        plot.plot(tresholds, scores[:, 0], label='$Recall$')
        plot.plot(tresholds, scores[:, 1], label='$Precision$')
        plot.plot(tresholds, scores[:, 2], label='$F_2$')
        plot.ylabel('Score')
        plot.xlabel('Threshold')
        plot.legend(loc='best')
        plot.show()

        final_tresh = tresholds[scores[:, 2].argmax()]

        y_hat_test = fileModel.predict_proba(
            Test.drop([label] + ['id_siniestro'], axis=1).values)
        y_hat_test = np.delete(y_hat_test, 0, axis=1)

        y_hat_test = (y_hat_test > final_tresh).astype(int)
        y_hat_test = y_hat_test.tolist()
        y_hat_test = [item for sublist in y_hat_test for item in sublist]

        print('Final threshold: %.3f' % final_tresh)
        print('Test Recall Score: %.3f' %
              recall_score(y_pred=y_hat_test, y_true=Test[label].values))
        print('Test Precision Score: %.3f' %
              precision_score(y_pred=y_hat_test, y_true=Test[label].values))
        print('Test F2 Score: %.3f' % fbeta_score(
            y_pred=y_hat_test, y_true=Test[label].values, beta=beta))

        del comparative['FRAUDE_Clusters']
        Test = pd.merge(Test, comparative, how='left', on='id_siniestro')
        cnf_matrix = confusion_matrix(Test['FRAUDE_Clusters'].values,
                                      y_hat_test)
        plot_confusion_matrix(cnf_matrix,
                              classes=['No Fraude', 'Fraude'],
                              title='Confusion matrix')

        cnf_matrix = confusion_matrix(Test['FRAUDE'].values, y_hat_test)
        plot_confusion_matrix(cnf_matrix,
                              classes=['Normal', 'Anormal'],
                              title='Confusion matrix')

        featureImportance = fileModel.feature_importances_

        featureImportance = featureImportance / featureImportance.max()

        sorted_idx = numpy.argsort(featureImportance)
        barPos = numpy.arange(sorted_idx.shape[0]) + 0.5
        plot.barh(barPos, featureImportance[sorted_idx], align='center')
        plot.yticks(barPos, fileNames[sorted_idx])
        plot.xlabel('Variable Importance')
        plot.show()

        return final_tresh
Exemple #5
0
    def rnc_treshold(Train, Valid, Test, radius, leaf_size,
                                   sampling=None, label='FRAUDE', beta=2):

        # With beta = 2, we give the same importance to Recall and Precision

        yTrain = Train[label]
        xTrain = Train
        del xTrain[label]

        names = Train.columns.values.tolist()
        fileNames = numpy.array(names)

        if sampling == None:
            pass
        elif sampling == 'ALLKNN':
            xTrain, yTrain = under_sampling(xTrain, yTrain)
        else:
            xTrain, yTrain = over_sampling(xTrain, yTrain, model=sampling)

        min_sample_leaf = round((len(xTrain.index)) * 0.005)

        fileModel = neighbors.RadiusNeighborsClassifier(radius= radius,
                             weights= 'distance', algorithm= 'auto',
                             leaf_size= leaf_size,
                             p= 2,
                             outlier_label= -1)

        fileModel.fit(xTrain.values, yTrain.values)

        print(np.median(fileModel.predict_proba(Valid[Valid[label] == 0].drop(label, axis=1).values)))
        print(np.median(fileModel.predict_proba(Valid[Valid[label] == 1].drop(label, axis=1).values)))

        tresholds = np.linspace(0.1, 1.0, 200)

        scores = []

        y_pred_score = fileModel.predict_proba(Valid.drop(label, axis=1).values)
        y_pred_score = np.delete(y_pred_score, 0, axis=1)

        print('min', y_pred_score.min())
        print('max', y_pred_score.max())

        for treshold in tresholds:
            y_hat = (y_pred_score > treshold).astype(int)
            y_hat = y_hat.tolist()
            y_hat = [item for sublist in y_hat for item in sublist]

            scores.append([
                recall_score(y_pred=y_hat, y_true=Valid[label].values),
                precision_score(y_pred=y_hat, y_true=Valid[label].values),
                fbeta_score(y_pred=y_hat, y_true=Valid[label].values,
                            beta=2)])

        scores = np.array(scores)
        print('max_scores', scores[:, 2].max(), scores[:, 2].argmax())

        plot.plot(tresholds, scores[:, 0], label='$Recall$')
        plot.plot(tresholds, scores[:, 1], label='$Precision$')
        plot.plot(tresholds, scores[:, 2], label='$F_2$')
        plot.ylabel('Score')
        plot.xlabel('Threshold')
        plot.legend(loc='best')
        plot.show()

        final_tresh = tresholds[scores[:, 2].argmax()]

        y_hat_test = fileModel.predict_proba(Test.drop(label, axis=1).values)
        y_hat_test = np.delete(y_hat_test, 0, axis=1)

        y_hat_test = (y_hat_test > final_tresh).astype(int)
        y_hat_test = y_hat_test.tolist()
        y_hat_test = [item for sublist in y_hat_test for item in sublist]

        print('Final threshold: %.3f' % final_tresh)
        print('Test Recall Score: %.3f' % recall_score(y_pred=y_hat_test, y_true=Test[label].values))
        print('Test Precision Score: %.3f' % precision_score(y_pred=y_hat_test, y_true=Test[label].values))
        print('Test F2 Score: %.3f' % fbeta_score(y_pred=y_hat_test, y_true=Test[label].values, beta=beta))

        cnf_matrix = confusion_matrix(Test[label].values, y_hat_test)
        plot_confusion_matrix(cnf_matrix, classes=['Normal', 'Anormal'], title='Confusion matrix')

        featureImportance = fileModel.feature_importances_

        featureImportance = featureImportance / featureImportance.max()

        sorted_idx = numpy.argsort(featureImportance)
        barPos = numpy.arange(sorted_idx.shape[0]) + 0.5
        plot.barh(barPos, featureImportance[sorted_idx], align='center')
        plot.yticks(barPos, fileNames[sorted_idx])
        plot.xlabel('Variable Importance')
        plot.show()

        return final_tresh
Exemple #6
0
    def extreme_randomize_evaluation(Train,
                                     Test,
                                     comparative,
                                     treshold,
                                     bootstrap=False,
                                     n_estimators: int = 200,
                                     max_depth: int = 50,
                                     oob_score: bool = False,
                                     class_weight='balanced_subsample',
                                     sampling=None,
                                     label='FRAUDE',
                                     beta=2):

        yTrain = Train[[label]]
        xTrain = Train
        del xTrain[label]

        if sampling == None:
            pass
        elif sampling == 'ALLKNN':
            class_weight = None
            xTrain, yTrain = under_sampling(xTrain, yTrain)
        else:
            xTrain, yTrain = over_sampling(xTrain, yTrain, model=sampling)
            class_weight = None

        model_name = str(sampling)

        min_sample_leaf = round((len(xTrain.index)) * 0.005)
        min_sample_split = min_sample_leaf * 10
        max_features = round(len(xTrain.columns) / 3)

        fileModel = ensemble.ExtraTreesClassifier(
            criterion='entropy',
            bootstrap=bootstrap,
            min_samples_leaf=min_sample_leaf,
            min_samples_split=min_sample_split,
            n_estimators=n_estimators,
            max_depth=max_depth,
            max_features=max_features,
            oob_score=oob_score,
            random_state=531,
            verbose=1,
            class_weight=class_weight,
            n_jobs=1)

        fileModel.fit(
            xTrain.drop(['id_siniestro'], axis=1).values, yTrain.values)
        y_hat_test = fileModel.predict_proba(
            Test.drop([label] + ['id_siniestro'], axis=1).values)

        y_hat_test = np.delete(y_hat_test, 0, axis=1)

        y_hat_test = (y_hat_test > treshold).astype(int)
        y_hat_test = y_hat_test.tolist()
        y_hat_test = [item for sublist in y_hat_test for item in sublist]

        print('Final threshold: %.3f' % treshold)
        print('Test Recall Score: %.3f' %
              recall_score(y_pred=y_hat_test, y_true=Test[label].values))
        print('Test Precision Score: %.3f' %
              precision_score(y_pred=y_hat_test, y_true=Test[label].values))
        print('Test F2 Score: %.3f' % fbeta_score(
            y_pred=y_hat_test, y_true=Test[label].values, beta=beta))

        del comparative['FRAUDE_Clusters']
        Test = pd.merge(Test, comparative, how='left', on='id_siniestro')
        cnf_matrix = confusion_matrix(Test['FRAUDE_Clusters'].values,
                                      y_hat_test)

        plot_confusion_matrix(cnf_matrix,
                              classes=['No Fraude', 'Fraude'],
                              title='Confusion matrix')

        cnf_matrix = confusion_matrix(Test['FRAUDE'].values, y_hat_test)
        plot_confusion_matrix(cnf_matrix,
                              classes=['Normal', 'Anormal'],
                              title='Confusion matrix')
Exemple #7
0
    def extreme_randomize_treshold(Train,
                                   Valid,
                                   Test,
                                   comparative,
                                   bootstrap=False,
                                   n_estimators: int = 200,
                                   max_depth: int = 50,
                                   oob_score: bool = False,
                                   class_weight='balanced_subsample',
                                   sampling=None,
                                   label='FRAUDE',
                                   beta=2):

        # With beta = 2, we give the same importance to Recall and Precision
        yTrain = Train[[label]]
        xTrain = Train
        del xTrain[label]

        if sampling == None:
            pass
        elif sampling == 'ALLKNN':
            xTrain, yTrain = under_sampling(xTrain, yTrain)
            class_weight = None
        else:
            xTrain, yTrain = over_sampling(xTrain, yTrain, model=sampling)
            class_weight = None

        model_name = str(sampling)

        min_sample_leaf = round((len(xTrain.index)) * 0.005)
        min_sample_split = min_sample_leaf * 10
        max_features = round(len(xTrain.columns) / 3)

        fileModel = ensemble.ExtraTreesClassifier(
            criterion='entropy',
            bootstrap=bootstrap,
            min_samples_leaf=min_sample_leaf,
            min_samples_split=min_sample_split,
            n_estimators=n_estimators,
            max_depth=max_depth,
            max_features=max_features,
            oob_score=oob_score,
            random_state=531,
            verbose=1,
            class_weight=class_weight,
            n_jobs=1)

        fileModel.fit(
            xTrain.drop(['id_siniestro'], axis=1).values, yTrain.values)

        print(
            np.median(
                fileModel.predict_proba(Valid[Valid[label] == 0].drop(
                    [label] + ['id_siniestro'], axis=1).values)))
        print(
            np.median(
                fileModel.predict_proba(Valid[Valid[label] == 1].drop(
                    [label] + ['id_siniestro'], axis=1).values)))

        tresholds = np.linspace(0.1, 1.0, 200)

        scores = []

        y_pred_score = fileModel.predict_proba(
            Valid.drop([label] + ['id_siniestro'], axis=1).values)
        print(fileModel.classes_)
        print(y_pred_score)
        y_pred_score = np.delete(y_pred_score, 0, axis=1)

        print('min', y_pred_score.min())
        print('max', y_pred_score.max())

        for treshold in tresholds:
            y_hat = (y_pred_score > treshold).astype(int)
            y_hat = y_hat.tolist()
            y_hat = [item for sublist in y_hat for item in sublist]

            scores.append([
                recall_score(y_pred=y_hat, y_true=Valid[label].values),
                precision_score(y_pred=y_hat, y_true=Valid[label].values),
                fbeta_score(y_pred=y_hat, y_true=Valid[label].values, beta=2)
            ])

        scores = np.array(scores)
        print('max_scores', scores[:, 2].max(), scores[:, 2].argmax())

        plot.plot(tresholds, scores[:, 0], label='$Recall$')
        plot.plot(tresholds, scores[:, 1], label='$Precision$')
        plot.plot(tresholds, scores[:, 2], label='$F_2$')
        plot.ylabel('Score')
        plot.xlabel('Threshold')
        plot.legend(loc='best')
        file_name = 'ERT_treshold_' + str(sampling) + '.png'
        plot.close()

        final_tresh = tresholds[scores[:, 2].argmax()]

        y_hat_test = fileModel.predict_proba(
            Test.drop([label] + ['id_siniestro'], axis=1).values)
        y_hat_test = np.delete(y_hat_test, 0, axis=1)

        y_hat_test = (y_hat_test > final_tresh).astype(int)
        y_hat_test = y_hat_test.tolist()
        y_hat_test = [item for sublist in y_hat_test for item in sublist]

        print('Final threshold: %.3f' % final_tresh)
        print('Test Recall Score: %.3f' %
              recall_score(y_pred=y_hat_test, y_true=Test[label].values))
        print('Test Precision Score: %.3f' %
              precision_score(y_pred=y_hat_test, y_true=Test[label].values))
        print('Test F2 Score: %.3f' % fbeta_score(
            y_pred=y_hat_test, y_true=Test[label].values, beta=beta))

        del comparative['FRAUDE_Clusters']
        Test = pd.merge(Test, comparative, how='left', on='id_siniestro')
        cnf_matrix = confusion_matrix(Test['FRAUDE_Clusters'].values,
                                      y_hat_test)
        plot_confusion_matrix(cnf_matrix,
                              classes=['No Fraude', 'Fraude'],
                              title='Confusion matrix')

        cnf_matrix = confusion_matrix(Test['FRAUDE'].values, y_hat_test)
        plot_confusion_matrix(cnf_matrix,
                              classes=['Normal', 'Anormal'],
                              title='Confusion matrix')

        return final_tresh
Exemple #8
0
    def extreme_randomize_tunning(Train,
                                  Test,
                                  sampling=None,
                                  scores='f1',
                                  label='FRAUDE'):

        Train = pd.concat([Train, Test], axis=0, ignore_index=True)
        yTrain = Train[[label]]
        xTrain = Train

        del xTrain[label]

        if sampling == None:
            pass
        elif sampling == 'ALLKNN':
            xTrain, yTrain = under_sampling(xTrain, yTrain)
            class_weight = None
        else:
            xTrain, yTrain = over_sampling(xTrain, yTrain, model=sampling)
            class_weight = None

        min_sample_leaf = round((len(xTrain.index)) * 0.005)
        min_sample_split = min_sample_leaf * 10

        features = round(len(xTrain.columns) / 3)

        if sampling != None:
            tuned_parameters = [{
                'bootstrap': [True, False],
                'min_samples_leaf': [min_sample_leaf],
                'min_samples_split': [min_sample_split],
                'n_estimators': [200, 300],
                'max_depth': [50, 100],
                'max_features': [features],
                'oob_score': [True, False],
                'random_state': [531],
                'verbose': [1]
            }]

        if sampling == None:
            tuned_parameters = [{
                'bootstrap': [True],
                'min_samples_leaf': [min_sample_leaf],
                'min_samples_split': [min_sample_split],
                'n_estimators': [200, 300],
                'max_depth': [50, 100],
                'max_features': [features],
                'oob_score': [True, False],
                'random_state': [531],
                'verbose': [1],
                'class_weight': [
                    'balanced', 'balanced_subsample', {
                        0: 1,
                        1: 2
                    }, {
                        0: 1,
                        1: 3
                    }, {
                        0: 1,
                        1: 5
                    }, {
                        0: 1,
                        1: 10
                    }, {
                        0: 1,
                        1: 20
                    }, {
                        0: 1,
                        1: 30
                    }, {
                        0: 1,
                        1: 40
                    }, {
                        0: 1,
                        1: 50
                    }, {
                        0: 1,
                        1: 60
                    }, {
                        0: 1,
                        1: 70
                    }, {
                        0: 1,
                        1: 80
                    }, {
                        0: 1,
                        1: 90
                    }, {
                        0: 1,
                        1: 100
                    }, {
                        0: 1,
                        1: 110
                    }, {
                        0: 1,
                        1: 120
                    }, {
                        0: 1,
                        1: 130
                    }, {
                        0: 1,
                        1: 140
                    }, {
                        0: 1,
                        1: 142
                    }
                ],
                'n_jobs': [-1]
            }]

        fileModel = GridSearchCV(ensemble.ExtraTreesClassifier(),
                                 param_grid=tuned_parameters,
                                 cv=10,
                                 scoring='%s_macro' % scores)

        fileModel.fit(
            xTrain.drop(['id_siniestro'], axis=1).values, yTrain[label].values)

        print("Best parameters set found on development set:")
        print()
        dict_values = fileModel.best_params_
        print(dict_values)
        print()
        print("Grid scores on development set:")
        print()
        means = fileModel.cv_results_['mean_test_score']
        stds = fileModel.cv_results_['std_test_score']
        for mean, std, params in zip(means, stds,
                                     fileModel.cv_results_['params']):
            print("%0.3f (+/-%0.03f) for %r" % (mean, std * 2, params))

        max_depth = int(dict_values['max_depth'])
        n_estimators = int(dict_values['n_estimators'])
        bootstrap = bool(dict_values['bootstrap'])
        oob_score = bool(dict_values['oob_score'])
        class_weight = dict_values['class_weight']
        max_features = int(dict_values['max_features'])

        df = pd.DataFrame.from_dict(dict_values, orient="index")
        df.to_csv('final_files\\sup_ert.csv',
                  sep=';',
                  encoding='latin1',
                  index=False)

        return max_depth, n_estimators, bootstrap, oob_score, class_weight, max_features, sampling, min_sample_leaf, min_sample_split, max_features
Exemple #9
0
    def model_evaluation(Train,
                         Valid,
                         Test,
                         comparative,
                         bootstrap=False,
                         n_estimators: int = 200,
                         max_depth: int = 50,
                         oob_score: bool = False,
                         class_weight='balanced_subsample',
                         sampling=None,
                         label='FRAUDE',
                         model='ert'):

        # With beta = 2, we give the same importance to Recall and Precision
        if sampling is not None:
            class_weight = None
        model_name = str(sampling)

        # fileModel.fit(xTrain.drop(['id_siniestro'], axis=1).values, yTrain.values)

        # print(np.median(fileModel.predict_proba(Valid[Valid[label] == 0].drop([label] + ['id_siniestro'], axis=1).values)))
        # print(np.median(fileModel.predict_proba(Valid[Valid[label] == 1].drop([label] + ['id_siniestro'], axis=1).values)))

        tresholds = np.linspace(0.1, 1.0, 200)

        scores = []
        y_pred_score = np.empty(shape=[0, 2])
        predicted_index = np.empty(shape=[
            0,
        ])
        # y_pred_score = fileModel.predict_proba(Valid.drop([label] + ['id_siniestro'], axis=1).values)
        skf = StratifiedKFold(n_splits=5, random_state=42, shuffle=False)
        Test = pd.concat([Train, Valid, Test], axis=0).reset_index()
        print(Test.shape)
        X = Test.drop([label] + ['id_siniestro'], axis=1)
        y = Test[[label]]
        for train_index, test_index in skf.split(X.values, y[label].values):
            X_train, X_test = X.loc[train_index].values, X.loc[
                test_index].values
            y_train, y_test = y.loc[train_index].values, y.loc[
                test_index].values
            if sampling == None:
                pass
            elif sampling == 'ALLKNN':
                X_train, y_train = under_sampling(X_train, y_train)
                class_weight = None
            else:
                X_train, y_train = over_sampling(X_train,
                                                 y_train,
                                                 model=sampling)
                class_weight = None

            min_sample_leaf = round(y_train.shape[0] * 0.005)
            min_sample_split = min_sample_leaf * 10
            max_features = round(X_train.shape[1] / 3)
            if model == 'ert':
                fileModel = ensemble.ExtraTreesClassifier(
                    criterion='entropy',
                    bootstrap=bootstrap,
                    min_samples_leaf=min_sample_leaf,
                    min_samples_split=min_sample_split,
                    n_estimators=n_estimators,
                    max_depth=max_depth,
                    max_features=max_features,
                    oob_score=oob_score,
                    random_state=531,
                    verbose=1,
                    class_weight=class_weight,
                    n_jobs=-1)
            elif model == 'gb':
                fileModel = ensemble.GradientBoostingClassifier(
                    loss='deviance',
                    learning_rate=0.01,
                    n_estimators=200,
                    subsample=1.0,
                    criterion='friedman_mse',
                    min_samples_split=min_sample_split,
                    min_samples_leaf=min_sample_leaf,
                    min_weight_fraction_leaf=0.,
                    max_depth=max_depth,
                    min_impurity_decrease=0.,
                    min_impurity_split=None,
                    init=None,
                    random_state=531,
                    max_features=None,
                    verbose=1,
                    max_leaf_nodes=None,
                    warm_start=False,
                    presort='auto')
            elif model == 'lxgb':
                fileModel = lgbx.LGBMClassifier(
                    boosting_type="gbdt",
                    num_leaves=2000,
                    max_depth=200,
                    learning_rate=0.005,
                    n_estimators=300,
                    max_bin=500,
                    objective='binary',
                    min_split_gain=0.,
                    min_child_weight=5,
                    min_child_samples=min_sample_leaf,
                    subsample=1.,
                    subsample_freq=1,
                    colsample_bytree=1.,
                    reg_alpha=0.,
                    reg_lambda=0.,
                    random_state=531,
                    n_jobs=-1,
                    silent=True)

            elif model.startswith('stacked'):

                ERT = ensemble.ExtraTreesClassifier(
                    bootstrap=bootstrap,
                    n_estimators=n_estimators,
                    max_depth=max_depth,
                    oob_score=oob_score,
                    class_weight=class_weight,
                    min_samples_leaf=min_sample_leaf,
                    min_samples_split=min_sample_split,
                    max_features='auto',
                    n_jobs=-1)

                Gboost = ensemble.GradientBoostingClassifier(
                    n_estimators=n_estimators,
                    learning_rate=0.005,
                    max_depth=max_depth,
                    loss='deviance',
                    random_state=531,
                    min_samples_split=min_sample_split,
                    min_samples_leaf=min_sample_leaf)

                Light_Gboost = lgbx.LGBMClassifier(
                    boosting_type="gbdt",
                    num_leaves=2000,
                    max_depth=-1,
                    learning_rate=0.005,
                    n_estimators=300,
                    max_bin=500,
                    objective='binary',
                    min_split_gain=0.,
                    min_child_weight=5,
                    min_child_samples=min_sample_leaf,
                    subsample=1.,
                    subsample_freq=1,
                    colsample_bytree=1.,
                    reg_alpha=0.,
                    reg_lambda=0.,
                    random_state=531,
                    n_jobs=-1,
                    silent=False)
                if model.endswith('_ERT'):
                    fileModel = StackingClassifier(
                        classifiers=[Gboost, Light_Gboost],
                        meta_classifier=ERT,
                        average_probas=True,
                        use_probas=True)
                elif model.endswith('_GB'):
                    fileModel = StackingClassifier(
                        classifiers=[ERT, Light_Gboost],
                        meta_classifier=Gboost,
                        average_probas=True,
                        use_probas=True)
                elif model.endswith('_LXGB'):
                    fileModel = StackingClassifier(
                        classifiers=[ERT, Gboost],
                        meta_classifier=Light_Gboost,
                        average_probas=True,
                        use_probas=True)

            fileModel.fit(X_train, y_train)
            y_pred_score_i = fileModel.predict_proba(X_test)
            y_pred_score = np.append(y_pred_score, y_pred_score_i, axis=0)
            print(y_pred_score.shape)
            print(test_index.shape)
            print(predicted_index.shape)
            predicted_index = np.append(predicted_index, test_index, axis=0)
            print(predicted_index)
            del X_train, X_test, y_train, y_test

        y_pred_score = np.delete(y_pred_score, 0, axis=1)
        print('min', y_pred_score.min())
        print('max', y_pred_score.max())

        for treshold in tresholds:
            y_hat = (y_pred_score > treshold).astype(int)
            y_hat = y_hat.tolist()
            y_hat = [item for sublist in y_hat for item in sublist]

            scores.append([
                recall_score(y_pred=y_hat, y_true=Test[label].values),
                precision_score(y_pred=y_hat, y_true=Test[label].values),
                fbeta_score(y_pred=y_hat, y_true=Test[label].values, beta=2)
            ])

        scores = np.array(scores)
        print('F-Score', scores[:, 2].max(), scores[:, 2].argmax())
        print('scores', scores[scores[:2].argmax()])
        print(scores)

        plot.plot(tresholds, scores[:, 0], label='$Recall$')
        plot.plot(tresholds, scores[:, 1], label='$Precision$')
        plot.plot(tresholds, scores[:, 2], label='$F_2$')
        plot.ylabel('Score')
        plot.xlabel('Threshold')
        plot.legend(loc='best')
        plot.show()
        plot.close()

        final_tresh = tresholds[scores[:, 2].argmax()]
        print(final_tresh)

        y_hat_test = (y_pred_score > final_tresh).astype(int)
        y_hat_test = y_hat_test.tolist()
        y_hat_test = [item for sublist in y_hat_test for item in sublist]

        Test['id_siniestro'] = Test['id_siniestro'].map(int)
        comparative['id_siniestro'] = comparative['id_siniestro'].map(int)
        Test = pd.merge(Test,
                        comparative[['id_siniestro', 'FRAUDE']],
                        how='left',
                        on='id_siniestro')
        cnf_matrix = confusion_matrix(Test['FRAUDE_Clusters'].values,
                                      y_hat_test)
        plot_confusion_matrix(cnf_matrix,
                              classes=['Normal', 'Abnormal'],
                              title='Confusion matrix')

        cnf_matrix = confusion_matrix(Test['FRAUDE'].values, y_hat_test)
        plot_confusion_matrix(cnf_matrix,
                              classes=['Unknown', 'Fraud'],
                              title='Confusion matrix')

        return None