Exemple #1
0
    def save_config(self, config):
        """
        Log an experiment configuration.

        Call this once at the top of your experiment, passing in all important
        config vars as a dict. This will serialize the config to JSON, while
        handling anything which can't be serialized in a graceful way (writing
        as informative a string as possible). 

        Example use:

        .. code-block:: python

            logger = EpochLogger(**logger_kwargs)
            logger.save_config(locals())
        """
        config_json = convert_json(config)
        if self.exp_name is not None:
            config_json['exp_name'] = self.exp_name
        if proc_id() == 0:
            output = json.dumps(config_json,
                                separators=(',', ':\t'),
                                indent=4,
                                sort_keys=True)
            print(colorize('Saving config:\n', color='cyan', bold=True))
            print(output)
            with open(osp.join(self.output_dir, "config.json"), 'w') as out:
                out.write(output)
Exemple #2
0
    def dump_tabular(self):
        """
        Write all of the diagnostics from the current iteration.

        Writes both to stdout, and to the output file.
        """
        if proc_id() == 0:
            vals = []
            key_lens = [len(key) for key in self.log_headers]
            max_key_len = max(15, max(key_lens))
            keystr = '%' + '%d' % max_key_len
            fmt = "| " + keystr + "s | %15s |"
            n_slashes = 22 + max_key_len
            print("-" * n_slashes)
            for key in self.log_headers:
                val = self.log_current_row.get(key, "")
                valstr = "%8.3g" % val if hasattr(val, "__float__") else val
                print(fmt % (key, valstr))
                vals.append(val)
            print("-" * n_slashes, flush=True)
            if self.output_file is not None:
                if self.first_row:
                    self.output_file.write("\t".join(self.log_headers) + "\n")
                self.output_file.write("\t".join(map(str, vals)) + "\n")
                self.output_file.flush()
        self.log_current_row.clear()
        self.first_row = False
Exemple #3
0
    def save_state(self, state_dict, itr=None):
        """
        Saves the state of an experiment.

        To be clear: this is about saving *state*, not logging diagnostics.
        All diagnostic logging is separate from this function. This function
        will save whatever is in ``state_dict``---usually just a copy of the
        environment---and the most recent parameters for the model you 
        previously set up saving for with ``setup_tf_saver``. 

        Call with any frequency you prefer. If you only want to maintain a
        single state and overwrite it at each call with the most recent 
        version, leave ``itr=None``. If you want to keep all of the states you
        save, provide unique (increasing) values for 'itr'.

        Args:
            state_dict (dict): Dictionary containing essential elements to
                describe the current state of training.

            itr: An int, or None. Current iteration of training.
        """
        if proc_id() == 0:
            fname = 'vars.pkl' if itr is None else 'vars%d.pkl' % itr
            try:
                joblib.dump(state_dict, osp.join(self.output_dir, fname))
            except:
                self.log('Warning: could not pickle state_dict.', color='red')
            if hasattr(self, 'tf_saver_elements'):
                self._tf_simple_save(itr)
            if hasattr(self, 'pytorch_saver_elements'):
                self._pytorch_simple_save(itr)
    def __init__(self, output_dir=None, output_fname='progress.txt', exp_name=None):
        """
        Initialize a Logger.

        Args:
            output_dir (string): A directory for saving results to. If 
                ``None``, defaults to a temp directory of the form
                ``/tmp/experiments/somerandomnumber``.

            output_fname (string): Name for the tab-separated-value file 
                containing metrics logged throughout a training run. 
                Defaults to ``progress.txt``. 

            exp_name (string): Experiment name. If you run multiple training
                runs and give them all the same ``exp_name``, the plotter
                will know to group them. (Use case: if you run the same
                hyperparameter configuration with multiple random seeds, you
                should give them all the same ``exp_name``.)
        """
        if proc_id()==0:
            self.output_dir = output_dir or "/tmp/experiments/%i"%int(time.time())
            if osp.exists(self.output_dir):
                print("Warning: Log dir %s already exists! Storing info there anyway."%self.output_dir)
            else:
                os.makedirs(self.output_dir)
            self.output_file = open(osp.join(self.output_dir, output_fname), 'w')
            atexit.register(self.output_file.close)
            print(colorize("Logging data to %s"%self.output_file.name, 'green', bold=True))
        else:
            self.output_dir = None
            self.output_file = None
        self.first_row=True
        self.log_headers = []
        self.log_current_row = {}
        self.exp_name = exp_name
Exemple #5
0
 def _create_env(self, env_file, time_scale, no_graphics):
     channel = EngineConfigurationChannel()
     env = UnityEnvironment(
         file_name=env_file,
         no_graphics=no_graphics,
         side_channels=[channel],
         # See if setting a worker id allows me to spin up more agents
         worker_id=proc_id(),
     )
     channel.set_configuration_parameters(
         time_scale=time_scale,
     )
     return env
Exemple #6
0
def main():
    model_path = None
    agent_file = "worm/worm.x86_64"
    if model_path is None:
        cpus = 4
        mpi_fork(cpus)

        no_graphics = True if proc_id() != 0 else False
        env_fn = lambda: WormGymWrapper(agent_file, no_graphics)
        ppo = PPO(env_fn, PPOActorCritic, epochs=5)
        if proc_id() == 0:
            with mlflow.start_run() as run:
                ppo.train()
        else:
            ppo.train()
    else:
        cpus = 1
        mpi_fork(cpus)
        env_fn = lambda: WormGymWrapper(
            agent_file, time_scale=1., no_graphics=False)
        ppo = PPO(env_fn, PPOActorCritic)
        test_episodes = 10
        ppo.test_model(model_path, test_episodes)
Exemple #7
0
 def _tf_simple_save(self, itr=None):
     """
     Uses simple_save to save a trained model, plus info to make it easy
     to associated tensors to variables after restore. 
     """
     if proc_id()==0:
         assert hasattr(self, 'tf_saver_elements'), \
             "First have to setup saving with self.setup_tf_saver"
         fpath = 'simple_save' + ('%d'%itr if itr is not None else '')
         fpath = osp.join(self.output_dir, fpath)
         if osp.exists(fpath):
             # simple_save refuses to be useful if fpath already exists,
             # so just delete fpath if it's there.
             shutil.rmtree(fpath)
         tf.saved_model.simple_save(export_dir=fpath, **self.tf_saver_elements)
         joblib.dump(self.tf_saver_info, osp.join(fpath, 'model_info.pkl'))
Exemple #8
0
def inference_environment(agent_file):
    """Create unity environment in real time with visualizations.

    Args:
        agent_file (str): path to the environment binary

    Returns:
        Gym environment.
    """
    time_scale = 1.
    no_graphics = False
    env = unity_env_fn(agent_file,
                       time_scale,
                       no_graphics,
                       worker_id=proc_id())
    return env
Exemple #9
0
def train_environment(agent_file):
    """Make unity environment with sped up time and no visualization.

    Args:
        agent_file (str): path to the environment binary

    Returns:
        Gym environment.
    """
    time_scale = 20.
    no_graphics = False
    env = unity_env_fn(agent_file,
                       time_scale,
                       no_graphics,
                       worker_id=proc_id())
    return env
Exemple #10
0
 def _pytorch_simple_save(self, itr=None):
     """
     Saves the PyTorch model (or models).
     """
     if proc_id() == 0:
         assert hasattr(self, 'pytorch_saver_elements'), \
             "First have to setup saving with self.setup_pytorch_saver"
         fpath = 'pyt_save'
         fpath = osp.join(self.output_dir, fpath)
         fname = 'model' + ('%d' % itr if itr is not None else '') + '.pt'
         fname = osp.join(fpath, fname)
         os.makedirs(fpath, exist_ok=True)
         with warnings.catch_warnings():
             warnings.simplefilter("ignore")
             # We are using a non-recommended way of saving PyTorch models,
             # by pickling whole objects (which are dependent on the exact
             # directory structure at the time of saving) as opposed to
             # just saving network weights. This works sufficiently well
             # for the purposes of Spinning Up, but you may want to do
             # something different for your personal PyTorch project.
             # We use a catch_warnings() context to avoid the warnings about
             # not being able to save the source code.
             torch.save(self.pytorch_saver_elements, fname)
    def dump_tabular(self, isprint=True, isvis=True):
        """
        Write all of the diagnostics from the current iteration.

        Writes both to stdout, and to the output file.
        """
        if proc_id() == 0:
            vals = []
            key_lens = [len(key) for key in self.log_headers]
            max_key_len = max(15, max(key_lens))
            keystr = '%' + '%d' % max_key_len
            fmt = "| " + keystr + "s | %15s |"
            n_slashes = 22 + max_key_len
            print("-" * n_slashes) if isprint else None
            for key in self.log_headers:
                val = self.log_current_row.get(key, "")
                # print(val)
                valstr = "%8.3g" % val if hasattr(val, "__float__") else val
                print(fmt % (key, valstr)) if isprint else None
                # if self.vis is not None and isvis:
                #     self.vis.line(
                #             X=np.array([self.log_current_row.get('Epoch', "")]),
                #             Y=np.array([val]),
                #             win=key,
                #             opts=dict(title=key),
                #             update='append'
                #             ) # plot graph
                vals.append(val)
            print("-" * n_slashes) if isprint else None
            if self.output_file is not None:
                # self.output_file.write("|")
                if self.first_row:
                    self.output_file.write("\t".join(self.log_headers) + "\n")
                self.output_file.write("\t".join(map(str, vals)) + "\n")
                self.output_file.flush()
        # self.log_current_row.clear()
        self.first_row = False
Exemple #12
0
    def train(self):
        """Run training across multiple environments using MPI.
        """
        # Save parameters to YAML if the root process.
        if proc_id() == 0:
            self.log_params()

        seed = 10000 * proc_id()
        torch.manual_seed(seed)
        np.random.seed(seed)
        local_steps_per_epoch = int(self.steps_per_epoch / num_procs())

        obs_dim = self.env.observation_space.shape
        act_dim = self.env.action_space.shape
        replay = PPOBuffer(obs_dim, act_dim, local_steps_per_epoch, self.gamma,
                           self.lam)
        pbar = tqdm(range(self.epochs), ncols=100)

        # Initial observation
        o, ep_ret, ep_len = self.env.reset(), 0, 0

        for epoch in pbar:
            episode_lengths = []
            episode_rewards = []

            for t in range(local_steps_per_epoch):
                a, v, logp = self.ac.step(
                    torch.as_tensor(o, dtype=torch.float32))

                next_o, r, d, _ = self.env.step(a)
                ep_ret += r
                ep_len += 1

                replay.store(o, a, r, v, logp)
                o = next_o

                timeout = ep_len == self.max_ep_len
                terminal = d or timeout
                epoch_ended = t == local_steps_per_epoch - 1

                if terminal or epoch_ended:
                    if epoch_ended and not (terminal):
                        print(
                            f"Warning: trajectory cut off by epoch at {ep_len} steps.",
                            flush=True)

                    if timeout or epoch_ended:
                        _, v, _ = self.ac.step(
                            torch.as_tensor(o, dtype=torch.float32))
                    else:
                        v = 0
                    replay.finish_path(v)
                    episode_lengths.append(ep_len)
                    episode_rewards.append(ep_ret)
                    o, ep_ret, ep_len = self.env.reset(), 0, 0

            data = replay.sample()
            pi_loss, value_loss, kl_div, entropy, clip_fraction = self.update(
                data)

            pbar.set_postfix(
                dict(avg_epsiode_length=f"{np.mean(episode_lengths): .2f}"))
            metrics = {
                "Environment/Episode Length": np.mean(episode_lengths),
                "Environment/Cumulative Reward": np.mean(episode_rewards),
                "Loss/Policy": pi_loss,
                "Loss/Value": value_loss,
                "Metrics/KL Divergence": kl_div,
                "Metrics/Entropy": entropy,
                "Metrics/Clip Fraction": clip_fraction,
            }
            episode_lengths = []
            episode_rewards = []
            self.log_summary(epoch, metrics)

            if proc_id() == 0 and ((epoch % self.save_freq == 0) or
                                   (epoch == self.epochs - 1)):
                self.save_model()
Exemple #13
0
 def _torch_save(self, model, itr=None):
     if proc_id() == 0:
         fname = model.__class__.__name__ + '_torch_save.pt' if itr is None else 'torch_save%d.pt' % itr
         torch.save(model, osp.join(self.output_dir, fname))
Exemple #14
0
def policyg(env_fn,
            actor_critic=ActorCritic,
            ac_kwargs=dict(),
            seed=0,
            episodes_per_epoch=40,
            epochs=500,
            gamma=0.99,
            lam=0.97,
            pi_lr=3e-4,
            vf_lr=1e-3,
            train_v_iters=80,
            max_ep_len=1000,
            logger_kwargs=dict(),
            save_freq=10):

    logger = EpochLogger(**logger_kwargs)
    logger.save_config(locals())

    seed += 10000 * proc_id()
    torch.manual_seed(seed)
    np.random.seed(seed)

    env = env_fn()
    obs_dim = env.observation_space.shape
    act_dim = env.action_space.shape

    ac_kwargs['action_space'] = env.action_space

    # Models
    ac = actor_critic(input_dim=obs_dim[0], **ac_kwargs)

    # Buffers
    local_episodes_per_epoch = int(episodes_per_epoch / num_procs())
    buff = BufferA(obs_dim[0], act_dim[0], local_episodes_per_epoch,
                   max_ep_len)

    # Count variables
    var_counts = tuple(
        count_vars(module) for module in [ac.policy, ac.value_f])
    logger.log('\nNumber of parameters: \t pi: %d, \t v: %d\n' % var_counts)

    # Optimizers
    train_pi = torch.optim.Adam(ac.policy.parameters(), lr=pi_lr)
    train_v = torch.optim.Adam(ac.value_f.parameters(), lr=vf_lr)

    # Parameters Sync
    sync_all_params(ac.parameters())

    def update(e):
        obs, act, adv, ret, lgp_old = [
            torch.Tensor(x) for x in buff.retrieve_all()
        ]

        # Policy
        _, lgp, _ = ac.policy(obs, act)
        entropy = (-lgp).mean()

        # Policy loss
        # policy gradient term + entropy term
        pi_loss = -(lgp * adv).mean()

        # Train policy
        train_pi.zero_grad()
        pi_loss.backward()
        average_gradients(train_pi.param_groups)
        train_pi.step()

        # Value function
        v = ac.value_f(obs)
        v_l_old = F.mse_loss(v, ret)
        for _ in range(train_v_iters):
            v = ac.value_f(obs)
            v_loss = F.mse_loss(v, ret)

            # Value function train
            train_v.zero_grad()
            v_loss.backward()
            average_gradients(train_v.param_groups)
            train_v.step()

        # Log the changes
        _, lgp, _, v = ac(obs, act)
        entropy_new = (-lgp).mean()
        pi_loss_new = -(lgp * adv).mean()
        v_loss_new = F.mse_loss(v, ret)
        kl = (lgp_old - lgp).mean()
        logger.store(LossPi=pi_loss,
                     LossV=v_l_old,
                     DeltaLossPi=(pi_loss_new - pi_loss),
                     DeltaLossV=(v_loss_new - v_l_old),
                     Entropy=entropy,
                     KL=kl)

    start_time = time.time()
    o, r, d, ep_ret, ep_len = env.reset(), 0, False, 0, 0
    total_t = 0

    for epoch in range(epochs):
        ac.eval()
        # Policy rollout
        for _ in range(local_episodes_per_epoch):
            for _ in range(max_ep_len):
                obs = torch.Tensor(o.reshape(1, -1))
                a, _, lopg_t, v_t = ac(obs)

                buff.store(o,
                           a.detach().numpy(), r, v_t.item(),
                           lopg_t.detach().numpy())
                logger.store(VVals=v_t)

                o, r, d, _ = env.step(a.detach().numpy()[0])
                ep_ret += r
                ep_len += 1
                total_t += 1

                terminal = d or (ep_len == max_ep_len)
                if terminal:
                    buff.end_episode()
                    logger.store(EpRet=ep_ret, EpLen=ep_len)
                    o, r, d, ep_ret, ep_len = env.reset(), 0, False, 0, 0

        if (epoch % save_freq == 0) or (epoch == epochs - 1):
            logger._torch_save(ac, fname="expert_torch_save.pt")

        # Update
        ac.train()

        update(epoch)

        # Log
        logger.log_tabular('Epoch', epoch)
        logger.log_tabular('EpRet', with_min_and_max=True)
        logger.log_tabular('EpLen', average_only=True)
        logger.log_tabular('VVals', with_min_and_max=True)
        logger.log_tabular('TotalEnvInteracts', total_t)
        logger.log_tabular('LossPi', average_only=True)
        logger.log_tabular('DeltaLossPi', average_only=True)
        logger.log_tabular('LossV', average_only=True)
        logger.log_tabular('DeltaLossV', average_only=True)
        logger.log_tabular('Entropy', average_only=True)
        logger.log_tabular('KL', average_only=True)
        logger.log_tabular('Time', time.time() - start_time)
        logger.dump_tabular()
Exemple #15
0
def valor(env_fn, actor_critic=ActorCritic, ac_kwargs=dict(), disc=Discriminator, dc_kwargs=dict(), seed=0, episodes_per_epoch=40,
        epochs=50, gamma=0.99, pi_lr=3e-4, vf_lr=1e-3, dc_lr=5e-4, train_v_iters=80, train_dc_iters=10, train_dc_interv=10, 
        lam=0.97, max_ep_len=1000, logger_kwargs=dict(), con_dim=5, save_freq=10, k=1):

    logger = EpochLogger(**logger_kwargs)
    logger.save_config(locals())

    seed += 10000 * proc_id()
    torch.manual_seed(seed)
    np.random.seed(seed)

    env = env_fn()
    obs_dim = env.observation_space.shape
    act_dim = env.action_space.shape

    ac_kwargs['action_space'] = env.action_space

    # Model
    actor_critic = actor_critic(input_dim=obs_dim[0]+con_dim, **ac_kwargs)
    disc = disc(input_dim=obs_dim[0], context_dim=con_dim, **dc_kwargs)

    # Buffer
    local_episodes_per_epoch = int(episodes_per_epoch / num_procs())
    buffer = Buffer(con_dim, obs_dim[0], act_dim[0], local_episodes_per_epoch, max_ep_len, train_dc_interv)

    # Count variables
    var_counts = tuple(count_vars(module) for module in
        [actor_critic.policy, actor_critic.value_f, disc.policy])
    logger.log('\nNumber of parameters: \t pi: %d, \t v: %d, \t d: %d\n'%var_counts)    

    # Optimizers
    train_pi = torch.optim.Adam(actor_critic.policy.parameters(), lr=pi_lr)
    train_v = torch.optim.Adam(actor_critic.value_f.parameters(), lr=vf_lr)
    train_dc = torch.optim.Adam(disc.policy.parameters(), lr=dc_lr)

    # Parameters Sync
    sync_all_params(actor_critic.parameters())
    sync_all_params(disc.parameters())

    def update(e):
        obs, act, adv, pos, ret, logp_old = [torch.Tensor(x) for x in buffer.retrieve_all()]
        
        # Policy
        _, logp, _ = actor_critic.policy(obs, act)
        entropy = (-logp).mean()

        # Policy loss
        pi_loss = -(logp*(k*adv+pos)).mean()

        # Train policy
        train_pi.zero_grad()
        pi_loss.backward()
        average_gradients(train_pi.param_groups)
        train_pi.step()

        # Value function
        v = actor_critic.value_f(obs)
        v_l_old = F.mse_loss(v, ret)
        for _ in range(train_v_iters):
            v = actor_critic.value_f(obs)
            v_loss = F.mse_loss(v, ret)

            # Value function train
            train_v.zero_grad()
            v_loss.backward()
            average_gradients(train_v.param_groups)
            train_v.step()

        # Discriminator
        if (e+1) % train_dc_interv == 0:
            print('Discriminator Update!')
            con, s_diff = [torch.Tensor(x) for x in buffer.retrieve_dc_buff()]
            _, logp_dc, _ = disc(s_diff, con)
            d_l_old = -logp_dc.mean()

            # Discriminator train
            for _ in range(train_dc_iters):
                _, logp_dc, _ = disc(s_diff, con)
                d_loss = -logp_dc.mean()
                train_dc.zero_grad()
                d_loss.backward()
                average_gradients(train_dc.param_groups)
                train_dc.step()

            _, logp_dc, _ = disc(s_diff, con)
            dc_l_new = -logp_dc.mean()
        else:
            d_l_old = 0
            dc_l_new = 0

        # Log the changes
        _, logp, _, v = actor_critic(obs, act)
        pi_l_new = -(logp*(k*adv+pos)).mean()
        v_l_new = F.mse_loss(v, ret)
        kl = (logp_old - logp).mean()
        logger.store(LossPi=pi_loss, LossV=v_l_old, KL=kl, Entropy=entropy, DeltaLossPi=(pi_l_new-pi_loss),
            DeltaLossV=(v_l_new-v_l_old), LossDC=d_l_old, DeltaLossDC=(dc_l_new-d_l_old))
        # logger.store(Adv=adv.reshape(-1).numpy().tolist(), Pos=pos.reshape(-1).numpy().tolist())

    start_time = time.time()
    o, r, d, ep_ret, ep_len = env.reset(), 0, False, 0, 0
    context_dist = Categorical(logits=torch.Tensor(np.ones(con_dim)))
    total_t = 0

    for epoch in range(epochs):
        actor_critic.eval()
        disc.eval()
        for _ in range(local_episodes_per_epoch):
            c = context_dist.sample()
            c_onehot = F.one_hot(c, con_dim).squeeze().float()
            for _ in range(max_ep_len):
                concat_obs = torch.cat([torch.Tensor(o.reshape(1, -1)), c_onehot.reshape(1, -1)], 1)
                a, _, logp_t, v_t = actor_critic(concat_obs)

                buffer.store(c, concat_obs.squeeze().detach().numpy(), a.detach().numpy(), r, v_t.item(), logp_t.detach().numpy())
                logger.store(VVals=v_t)

                o, r, d, _ = env.step(a.detach().numpy()[0])
                ep_ret += r
                ep_len += 1
                total_t += 1

                terminal = d or (ep_len == max_ep_len)
                if terminal:
                    dc_diff = torch.Tensor(buffer.calc_diff()).unsqueeze(0)
                    con = torch.Tensor([float(c)]).unsqueeze(0)
                    _, _, log_p = disc(dc_diff, con)
                    buffer.end_episode(log_p.detach().numpy())
                    logger.store(EpRet=ep_ret, EpLen=ep_len)
                    o, r, d, ep_ret, ep_len = env.reset(), 0, False, 0, 0

        if (epoch % save_freq == 0) or (epoch == epochs - 1):
            logger.save_state({'env': env}, [actor_critic, disc], None)

        # Update
        actor_critic.train()
        disc.train()

        update(epoch)

        # Log
        logger.log_tabular('Epoch', epoch)
        logger.log_tabular('EpRet', with_min_and_max=True)
        logger.log_tabular('EpLen', average_only=True)
        logger.log_tabular('VVals', with_min_and_max=True)
        logger.log_tabular('TotalEnvInteracts', total_t)
        logger.log_tabular('LossPi', average_only=True)
        logger.log_tabular('DeltaLossPi', average_only=True)
        logger.log_tabular('LossV', average_only=True)
        logger.log_tabular('DeltaLossV', average_only=True)
        logger.log_tabular('LossDC', average_only=True)
        logger.log_tabular('DeltaLossDC', average_only=True)
        logger.log_tabular('Entropy', average_only=True)
        logger.log_tabular('KL', average_only=True)
        logger.log_tabular('Time', time.time()-start_time)
        logger.dump_tabular()
Exemple #16
0
def gail(env_fn,
         actor_critic=ActorCritic,
         ac_kwargs=dict(),
         disc=Discriminator,
         dc_kwargs=dict(),
         seed=0,
         episodes_per_epoch=40,
         epochs=500,
         gamma=0.99,
         lam=0.97,
         pi_lr=3e-3,
         vf_lr=3e-3,
         dc_lr=5e-4,
         train_v_iters=80,
         train_dc_iters=80,
         max_ep_len=1000,
         logger_kwargs=dict(),
         save_freq=10):

    l_lam = 0  # balance two loss term

    logger = EpochLogger(**logger_kwargs)
    logger.save_config(locals())

    seed += 10000 * proc_id()
    torch.manual_seed(seed)
    np.random.seed(seed)

    env = env_fn()
    obs_dim = env.observation_space.shape
    act_dim = env.action_space.shape

    ac_kwargs['action_space'] = env.action_space

    # Models
    ac = actor_critic(input_dim=obs_dim[0], **ac_kwargs)
    disc = disc(input_dim=obs_dim[0], **dc_kwargs)

    # TODO: Load expert policy here
    expert = actor_critic(input_dim=obs_dim[0], **ac_kwargs)
    expert_name = "expert_torch_save.pt"
    expert = torch.load(osp.join(logger_kwargs['output_dir'], expert_name))

    # Buffers
    local_episodes_per_epoch = int(episodes_per_epoch / num_procs())
    buff_s = BufferS(obs_dim[0], act_dim[0], local_episodes_per_epoch,
                     max_ep_len)
    buff_t = BufferT(obs_dim[0], act_dim[0], local_episodes_per_epoch,
                     max_ep_len)

    # Count variables
    var_counts = tuple(
        count_vars(module) for module in [ac.policy, ac.value_f, disc.policy])
    logger.log('\nNumber of parameters: \t pi: %d, \t v: %d, \t d: %d\n' %
               var_counts)

    # Optimizers
    train_pi = torch.optim.Adam(ac.policy.parameters(), lr=pi_lr)
    train_v = torch.optim.Adam(ac.value_f.parameters(), lr=vf_lr)
    train_dc = torch.optim.Adam(disc.policy.parameters(), lr=dc_lr)

    # Parameters Sync
    sync_all_params(ac.parameters())
    sync_all_params(disc.parameters())

    def update(e):
        obs_s, act, adv, ret, lgp_old = [
            torch.Tensor(x) for x in buff_s.retrieve_all()
        ]
        obs_t, _ = [torch.Tensor(x) for x in buff_t.retrieve_all()]

        # Policy
        _, lgp, _ = ac.policy(obs_s, act)
        entropy = (-lgp).mean()

        # Policy loss
        # policy gradient term + entropy term
        pi_loss = -(lgp * adv).mean() - l_lam * entropy

        # Train policy
        if e > 10:
            train_pi.zero_grad()
            pi_loss.backward()
            average_gradients(train_pi.param_groups)
            train_pi.step()

        # Value function
        v = ac.value_f(obs_s)
        v_l_old = F.mse_loss(v, ret)
        for _ in range(train_v_iters):
            v = ac.value_f(obs_s)
            v_loss = F.mse_loss(v, ret)

            # Value function train
            train_v.zero_grad()
            v_loss.backward()
            average_gradients(train_v.param_groups)
            train_v.step()

        # Discriminator
        gt1 = torch.ones(obs_s.size()[0], dtype=torch.int)
        gt2 = torch.zeros(obs_t.size()[0], dtype=torch.int)
        _, lgp_s, _ = disc(obs_s, gt=gt1)
        _, lgp_t, _ = disc(obs_t, gt=gt2)
        dc_loss_old = -lgp_s.mean() - lgp_t.mean()
        for _ in range(train_dc_iters):
            _, lgp_s, _ = disc(obs_s, gt=gt1)
            _, lgp_t, _ = disc(obs_t, gt=gt2)
            dc_loss = -lgp_s.mean() - lgp_t.mean()

            # Discriminator train
            train_dc.zero_grad()
            dc_loss.backward()
            average_gradients(train_dc.param_groups)
            train_dc.step()

        _, lgp_s, _ = disc(obs_s, gt=gt1)
        _, lgp_t, _ = disc(obs_t, gt=gt2)
        dc_loss_new = -lgp_s.mean() - lgp_t.mean()

        # Log the changes
        _, lgp, _, v = ac(obs, act)
        entropy_new = (-lgp).mean()
        pi_loss_new = -(lgp * adv).mean() - l_lam * entropy
        v_loss_new = F.mse_loss(v, ret)
        kl = (lgp_old - lgp).mean()
        logger.store(LossPi=pi_loss,
                     LossV=v_l_old,
                     LossDC=dc_loss_old,
                     DeltaLossPi=(pi_loss_new - pi_loss),
                     DeltaLossV=(v_loss_new - v_l_old),
                     DeltaLossDC=(dc_loss_new - dc_loss_old),
                     DeltaEnt=(entropy_new - entropy),
                     Entropy=entropy,
                     KL=kl)

    start_time = time.time()
    o, r, sdr, d, ep_ret, ep_sdr, ep_len = env.reset(), 0, 0, False, 0, 0, 0
    total_t = 0

    ep_len_t = 0
    for epoch in range(epochs):
        ac.eval()
        disc.eval()
        # We recognize the probability term of index [0] correspond to the teacher's policy
        # Student's policy rollout
        for _ in range(local_episodes_per_epoch):
            for _ in range(max_ep_len):
                obs = torch.Tensor(o.reshape(1, -1))
                a, _, lopg_t, v_t = ac(obs)

                buff_s.store(o,
                             a.detach().numpy(), r, sdr, v_t.item(),
                             lopg_t.detach().numpy())
                logger.store(VVals=v_t)

                o, r, d, _ = env.step(a.detach().numpy()[0])
                _, sdr, _ = disc(torch.Tensor(o.reshape(1, -1)),
                                 gt=torch.Tensor([0]))
                if sdr < -4:  # Truncate rewards
                    sdr = -4
                ep_ret += r
                ep_sdr += sdr
                ep_len += 1
                total_t += 1

                terminal = d or (ep_len == max_ep_len)
                if terminal:
                    buff_s.end_episode()
                    logger.store(EpRetS=ep_ret, EpLenS=ep_len, EpSdrS=ep_sdr)
                    o, r, sdr, d, ep_ret, ep_sdr, ep_len = env.reset(
                    ), 0, 0, False, 0, 0, 0

        # Teacher's policy rollout
        for _ in range(local_episodes_per_epoch):
            for _ in range(max_ep_len):
                obs = torch.Tensor(o.reshape(1, -1))
                a, _, _, _ = expert(obs)

                buff_t.store(o, a.detach().numpy(), r)

                o, r, d, _ = env.step(a.detach().numpy()[0])
                ep_ret += r
                ep_len += 1
                total_t += 1

                terminal = d or (ep_len == max_ep_len)
                if terminal:
                    buff_t.end_episode()
                    logger.store(EpRetT=ep_ret, EpLenT=ep_len)
                    o, r, d, ep_ret, ep_len = env.reset(), 0, False, 0, 0

        if (epoch % save_freq == 0) or (epoch == epochs - 1):
            logger.save_state({'env': env}, [ac, disc], None)

        # Update
        ac.train()
        disc.train()

        update(epoch)

        # Log
        logger.log_tabular('Epoch', epoch)
        logger.log_tabular('EpRetS', with_min_and_max=True)
        logger.log_tabular('EpSdrS', with_min_and_max=True)
        logger.log_tabular('EpLenS', average_only=True)
        logger.log_tabular('EpRetT', with_min_and_max=True)
        logger.log_tabular('EpLenT', average_only=True)
        logger.log_tabular('VVals', with_min_and_max=True)
        logger.log_tabular('TotalEnvInteracts', total_t)
        logger.log_tabular('LossPi', average_only=True)
        logger.log_tabular('DeltaLossPi', average_only=True)
        logger.log_tabular('LossV', average_only=True)
        logger.log_tabular('DeltaLossV', average_only=True)
        logger.log_tabular('LossDC', average_only=True)
        logger.log_tabular('DeltaLossDC', average_only=True)
        logger.log_tabular('Entropy', average_only=True)
        logger.log_tabular('DeltaEnt', average_only=True)
        logger.log_tabular('KL', average_only=True)
        logger.log_tabular('Time', time.time() - start_time)
        logger.dump_tabular()
def vpg(env_fn, actor_critic=core.mlp_actor_critic, ac_kwargs=dict(), seed=0, 
        steps_per_epoch=4000, epochs=50, gamma=0.99, pi_lr=3e-4,
        vf_lr=1e-3, train_v_iters=80, lam=0.97, max_ep_len=1000,
        logger_kwargs=dict(), save_freq=10):
    """
    Vanilla Policy Gradient 

    (with GAE-Lambda for advantage estimation)

    Args:
        env_fn : A function which creates a copy of the environment.
            The environment must satisfy the OpenAI Gym API.

        actor_critic: A function which takes in placeholder symbols 
            for state, ``x_ph``, and action, ``a_ph``, and returns the main 
            outputs from the agent's Tensorflow computation graph:

            ===========  ================  ======================================
            Symbol       Shape             Description
            ===========  ================  ======================================
            ``pi``       (batch, act_dim)  | Samples actions from policy given 
                                           | states.
            ``logp``     (batch,)          | Gives log probability, according to
                                           | the policy, of taking actions ``a_ph``
                                           | in states ``x_ph``.
            ``logp_pi``  (batch,)          | Gives log probability, according to
                                           | the policy, of the action sampled by
                                           | ``pi``.
            ``v``        (batch,)          | Gives the value estimate for states
                                           | in ``x_ph``. (Critical: make sure 
                                           | to flatten this!)
            ===========  ================  ======================================

        ac_kwargs (dict): Any kwargs appropriate for the actor_critic 
            function you provided to VPG.

        seed (int): Seed for random number generators.

        steps_per_epoch (int): Number of steps of interaction (state-action pairs) 
            for the agent and the environment in each epoch.

        epochs (int): Number of epochs of interaction (equivalent to
            number of policy updates) to perform.

        gamma (float): Discount factor. (Always between 0 and 1.)

        pi_lr (float): Learning rate for policy optimizer.

        vf_lr (float): Learning rate for value function optimizer.

        train_v_iters (int): Number of gradient descent steps to take on 
            value function per epoch.

        lam (float): Lambda for GAE-Lambda. (Always between 0 and 1,
            close to 1.)

        max_ep_len (int): Maximum length of trajectory / episode / rollout.

        logger_kwargs (dict): Keyword args for EpochLogger.

        save_freq (int): How often (in terms of gap between epochs) to save
            the current policy and value function.

    """

    logger = EpochLogger(**logger_kwargs)
    logger.save_config(locals())

    seed += 10000 * proc_id()
    tf.set_random_seed(seed)
    np.random.seed(seed)

    env = env_fn()
    obs_dim = env.observation_space.shape
    act_dim = env.action_space.shape
    
    # Share information about action space with policy architecture
    ac_kwargs['action_space'] = env.action_space

    # Inputs to computation graph
    x_ph, a_ph = core.placeholders_from_spaces(env.observation_space, env.action_space)
    adv_ph, ret_ph, logp_old_ph = core.placeholders(None, None, None)

    # Main outputs from computation graph
    pi, logp, logp_pi, v = actor_critic(x_ph, a_ph, **ac_kwargs)

    # Need all placeholders in *this* order later (to zip with data from buffer)
    all_phs = [x_ph, a_ph, adv_ph, ret_ph, logp_old_ph]

    # Every step, get: action, value, and logprob
    get_action_ops = [pi, v, logp_pi]

    # Experience buffer
    local_steps_per_epoch = int(steps_per_epoch / num_procs())
    buf = VPGBuffer(obs_dim, act_dim, local_steps_per_epoch, gamma, lam)

    # Count variables
    var_counts = tuple(core.count_vars(scope) for scope in ['pi', 'v'])
    logger.log('\nNumber of parameters: \t pi: %d, \t v: %d\n'%var_counts)

    # VPG objectives
    pi_loss = -tf.reduce_mean(logp * adv_ph)
    v_loss = tf.reduce_mean((ret_ph - v)**2)

    # Info (useful to watch during learning)
    approx_kl = tf.reduce_mean(logp_old_ph - logp)      # a sample estimate for KL-divergence, easy to compute
    approx_ent = tf.reduce_mean(-logp)                  # a sample estimate for entropy, also easy to compute

    # Optimizers
    train_pi = MpiAdamOptimizer(learning_rate=pi_lr).minimize(pi_loss)
    train_v = MpiAdamOptimizer(learning_rate=vf_lr).minimize(v_loss)

    sess = tf.Session()
    sess.run(tf.global_variables_initializer())

    # Sync params across processes
    sess.run(sync_all_params())

    # Setup model saving
    logger.setup_tf_saver(sess, inputs={'x': x_ph}, outputs={'pi': pi, 'v': v})

    def update():
        inputs = {k:v for k,v in zip(all_phs, buf.get())}
        pi_l_old, v_l_old, ent = sess.run([pi_loss, v_loss, approx_ent], feed_dict=inputs)

        # Policy gradient step
        sess.run(train_pi, feed_dict=inputs)

        # Value function learning
        for _ in range(train_v_iters):
            sess.run(train_v, feed_dict=inputs)

        # Log changes from update
        pi_l_new, v_l_new, kl = sess.run([pi_loss, v_loss, approx_kl], feed_dict=inputs)
        logger.store(LossPi=pi_l_old, LossV=v_l_old, 
                     KL=kl, Entropy=ent, 
                     DeltaLossPi=(pi_l_new - pi_l_old),
                     DeltaLossV=(v_l_new - v_l_old))

    start_time = time.time()
    o, ep_ret, ep_len = env.reset(), 0, 0

    # Main loop: collect experience in env and update/log each epoch
    for epoch in range(epochs):
        for t in range(local_steps_per_epoch):
            a, v_t, logp_t = sess.run(get_action_ops, feed_dict={x_ph: o.reshape(1,-1)})

            o2, r, d, _ = env.step(a[0])
            ep_ret += r
            ep_len += 1

            # save and log
            buf.store(o, a, r, v_t, logp_t)
            logger.store(VVals=v_t)

            # Update obs (critical!)
            o = o2

            terminal = d or (ep_len == max_ep_len)
            if terminal or (t==local_steps_per_epoch-1):
                if not(terminal):
                    print('Warning: trajectory cut off by epoch at %d steps.'%ep_len)
                # if trajectory didn't reach terminal state, bootstrap value target
                last_val = 0 if d else sess.run(v, feed_dict={x_ph: o.reshape(1,-1)})
                buf.finish_path(last_val)
                if terminal:
                    # only save EpRet / EpLen if trajectory finished
                    logger.store(EpRet=ep_ret, EpLen=ep_len)
                o, ep_ret, ep_len = env.reset(), 0, 0

        # Save model
        if (epoch % save_freq == 0) or (epoch == epochs-1):
            logger.save_state({'env': env}, None)

        # Perform VPG update!
        update()

        # Log info about epoch
        logger.log_tabular('Epoch', epoch)
        logger.log_tabular('EpRet', with_min_and_max=True)
        logger.log_tabular('EpLen', average_only=True)
        logger.log_tabular('VVals', with_min_and_max=True)
        logger.log_tabular('TotalEnvInteracts', (epoch+1)*steps_per_epoch)
        logger.log_tabular('LossPi', average_only=True)
        logger.log_tabular('LossV', average_only=True)
        logger.log_tabular('DeltaLossPi', average_only=True)
        logger.log_tabular('DeltaLossV', average_only=True)
        logger.log_tabular('Entropy', average_only=True)
        logger.log_tabular('KL', average_only=True)
        logger.log_tabular('Time', time.time()-start_time)
        logger.dump_tabular()
Exemple #18
0
 def log(self, msg, color='green'):
     """Print a colorized message to stdout."""
     if proc_id() == 0:
         print(colorize(msg, color, bold=True))
Exemple #19
0
def ppo(env_fn,
        actor_critic=core.mlp_actor_critic,
        ac_kwargs=dict(),
        seed=0,
        steps_per_epoch=4000,
        epochs=50,
        gamma=0.99,
        clip_ratio=0.2,
        pi_lr=3e-4,
        vf_lr=1e-3,
        train_pi_iters=80,
        train_v_iters=80,
        lam=0.97,
        max_ep_len=1000,
        target_kl=0.01,
        logger_kwargs=dict(),
        save_freq=10):
    """
    Proximal Policy Optimization (by clipping), 

    with early stopping based on approximate KL

    Args:
        env_fn : A function which creates a copy of the environment.
            The environment must satisfy the OpenAI Gym API.

        actor_critic: A function which takes in placeholder symbols 
            for state, ``x_ph``, and action, ``a_ph``, and returns the main 
            outputs from the agent's Tensorflow computation graph:

            ===========  ================  ======================================
            Symbol       Shape             Description
            ===========  ================  ======================================
            ``pi``       (batch, act_dim)  | Samples actions from policy given 
                                           | states.
            ``logp``     (batch,)          | Gives log probability, according to
                                           | the policy, of taking actions ``a_ph``
                                           | in states ``x_ph``.
            ``logp_pi``  (batch,)          | Gives log probability, according to
                                           | the policy, of the action sampled by
                                           | ``pi``.
            ``v``        (batch,)          | Gives the value estimate for states
                                           | in ``x_ph``. (Critical: make sure 
                                           | to flatten this!)
            ===========  ================  ======================================

        ac_kwargs (dict): Any kwargs appropriate for the actor_critic 
            function you provided to PPO.

        seed (int): Seed for random number generators.

        steps_per_epoch (int): Number of steps of interaction (state-action pairs) 
            for the agent and the environment in each epoch.

        epochs (int): Number of epochs of interaction (equivalent to
            number of policy updates) to perform.

        gamma (float): Discount factor. (Always between 0 and 1.)

        clip_ratio (float): Hyperparameter for clipping in the policy objective.
            Roughly: how far can the new policy go from the old policy while 
            still profiting (improving the objective function)? The new policy 
            can still go farther than the clip_ratio says, but it doesn't help
            on the objective anymore. (Usually small, 0.1 to 0.3.) Typically
            denoted by :math:`\epsilon`. 

        pi_lr (float): Learning rate for policy optimizer.

        vf_lr (float): Learning rate for value function optimizer.

        train_pi_iters (int): Maximum number of gradient descent steps to take 
            on policy loss per epoch. (Early stopping may cause optimizer
            to take fewer than this.)

        train_v_iters (int): Number of gradient descent steps to take on 
            value function per epoch.

        lam (float): Lambda for GAE-Lambda. (Always between 0 and 1,
            close to 1.)

        max_ep_len (int): Maximum length of trajectory / episode / rollout.

        target_kl (float): Roughly what KL divergence we think is appropriate
            between new and old policies after an update. This will get used 
            for early stopping. (Usually small, 0.01 or 0.05.)

        logger_kwargs (dict): Keyword args for EpochLogger.

        save_freq (int): How often (in terms of gap between epochs) to save
            the current policy and value function.

    """

    logger = EpochLogger(**logger_kwargs)
    logger.save_config(locals())

    seed += 10000 * proc_id()
    tf.set_random_seed(seed)
    np.random.seed(seed)

    env = env_fn()
    obs_dim = env.observation_space.shape
    act_dim = env.action_space.shape

    # Share information about action space with policy architecture
    ac_kwargs['action_space'] = env.action_space

    # Inputs to computation graph
    x_ph, a_ph = core.placeholders_from_spaces(env.observation_space,
                                               env.action_space)
    adv_ph, ret_ph, logp_old_ph = core.placeholders(None, None, None)

    # Main outputs from computation graph
    pi, logp, logp_pi, v = actor_critic(x_ph, a_ph, **ac_kwargs)

    # Need all placeholders in *this* order later (to zip with data from buffer)
    all_phs = [x_ph, a_ph, adv_ph, ret_ph, logp_old_ph]

    # Every step, get: action, value, and logprob
    get_action_ops = [pi, v, logp_pi]

    # Experience buffer
    local_steps_per_epoch = int(steps_per_epoch / num_procs())
    buf = PPOBuffer(obs_dim, act_dim, local_steps_per_epoch, gamma, lam)

    # Count variables
    var_counts = tuple(core.count_vars(scope) for scope in ['pi', 'v'])
    logger.log('\nNumber of parameters: \t pi: %d, \t v: %d\n' % var_counts)

    # PPO objectives
    ratio = tf.exp(logp - logp_old_ph)  # pi(a|s) / pi_old(a|s)
    min_adv = tf.where(adv_ph > 0, (1 + clip_ratio) * adv_ph,
                       (1 - clip_ratio) * adv_ph)
    pi_loss = -tf.reduce_mean(tf.minimum(ratio * adv_ph, min_adv))
    v_loss = tf.reduce_mean((ret_ph - v)**2)

    # Info (useful to watch during learning)
    approx_kl = tf.reduce_mean(
        logp_old_ph -
        logp)  # a sample estimate for KL-divergence, easy to compute
    approx_ent = tf.reduce_mean(
        -logp)  # a sample estimate for entropy, also easy to compute
    clipped = tf.logical_or(ratio > (1 + clip_ratio), ratio < (1 - clip_ratio))
    clipfrac = tf.reduce_mean(tf.cast(clipped, tf.float32))

    # Optimizers
    train_pi = MpiAdamOptimizer(learning_rate=pi_lr).minimize(pi_loss)
    train_v = MpiAdamOptimizer(learning_rate=vf_lr).minimize(v_loss)

    sess = tf.Session()
    sess.run(tf.global_variables_initializer())

    # Sync params across processes
    sess.run(sync_all_params())

    # Setup model saving
    logger.setup_tf_saver(sess, inputs={'x': x_ph}, outputs={'pi': pi, 'v': v})

    def update():
        inputs = {k: v for k, v in zip(all_phs, buf.get())}
        pi_l_old, v_l_old, ent = sess.run([pi_loss, v_loss, approx_ent],
                                          feed_dict=inputs)

        # Training
        for i in range(train_pi_iters):
            _, kl = sess.run([train_pi, approx_kl], feed_dict=inputs)
            kl = mpi_avg(kl)
            if kl > 1.5 * target_kl:
                logger.log(
                    'Early stopping at step %d due to reaching max kl.' % i)
                break
        logger.store(StopIter=i)
        for _ in range(train_v_iters):
            sess.run(train_v, feed_dict=inputs)

        # Log changes from update
        pi_l_new, v_l_new, kl, cf = sess.run(
            [pi_loss, v_loss, approx_kl, clipfrac], feed_dict=inputs)
        logger.store(LossPi=pi_l_old,
                     LossV=v_l_old,
                     KL=kl,
                     Entropy=ent,
                     ClipFrac=cf,
                     DeltaLossPi=(pi_l_new - pi_l_old),
                     DeltaLossV=(v_l_new - v_l_old))

    start_time = time.time()
    o, r, d, ep_ret, ep_len = env.reset(), 0, False, 0, 0

    # Main loop: collect experience in env and update/log each epoch
    for epoch in range(epochs):
        for t in range(local_steps_per_epoch):
            a, v_t, logp_t = sess.run(get_action_ops,
                                      feed_dict={x_ph: o.reshape(1, -1)})

            o2, r, d, _ = env.step(a[0])
            ep_ret += r
            ep_len += 1

            # save and log
            buf.store(o, a, r, v_t, logp_t)
            logger.store(VVals=v_t)

            # Update obs (critical!)
            o = o2

            terminal = d or (ep_len == max_ep_len)
            if terminal or (t == local_steps_per_epoch - 1):
                if not (terminal):
                    print('Warning: trajectory cut off by epoch at %d steps.' %
                          ep_len)
                # if trajectory didn't reach terminal state, bootstrap value target
                last_val = 0 if d else sess.run(
                    v, feed_dict={x_ph: o.reshape(1, -1)})
                buf.finish_path(last_val)
                if terminal:
                    # only save EpRet / EpLen if trajectory finished
                    logger.store(EpRet=ep_ret, EpLen=ep_len)
                o, ep_ret, ep_len = env.reset(), 0, 0

        # Save model
        if (epoch % save_freq == 0) or (epoch == epochs - 1):
            logger.save_state({'env': env}, None)

        # Perform PPO update!
        update()

        # Log info about epoch
        logger.log_tabular('Epoch', epoch)
        logger.log_tabular('EpRet', with_min_and_max=True)
        logger.log_tabular('EpLen', average_only=True)
        logger.log_tabular('VVals', with_min_and_max=True)
        logger.log_tabular('TotalEnvInteracts', (epoch + 1) * steps_per_epoch)
        logger.log_tabular('LossPi', average_only=True)
        logger.log_tabular('LossV', average_only=True)
        logger.log_tabular('DeltaLossPi', average_only=True)
        logger.log_tabular('DeltaLossV', average_only=True)
        logger.log_tabular('Entropy', average_only=True)
        logger.log_tabular('KL', average_only=True)
        logger.log_tabular('ClipFrac', average_only=True)
        logger.log_tabular('StopIter', average_only=True)
        logger.log_tabular('Time', time.time() - start_time)
        logger.dump_tabular()
Exemple #20
0
def trpo(env_fn, actor_critic=core.mlp_actor_critic, ac_kwargs=dict(), seed=0, 
         steps_per_epoch=4000, epochs=50, gamma=0.99, delta=0.01, vf_lr=1e-3,
         train_v_iters=80, damping_coeff=0.1, cg_iters=10, backtrack_iters=10, 
         backtrack_coeff=0.8, lam=0.97, max_ep_len=1000, logger_kwargs=dict(), 
         save_freq=10, algo='trpo'):
    """
    Trust Region Policy Optimization 

    (with support for Natural Policy Gradient)

    Args:
        env_fn : A function which creates a copy of the environment.
            The environment must satisfy the OpenAI Gym API.

        actor_critic: A function which takes in placeholder symbols 
            for state, ``x_ph``, and action, ``a_ph``, and returns the main 
            outputs from the agent's Tensorflow computation graph:

            ============  ================  ========================================
            Symbol        Shape             Description
            ============  ================  ========================================
            ``pi``        (batch, act_dim)  | Samples actions from policy given 
                                            | states.
            ``logp``      (batch,)          | Gives log probability, according to
                                            | the policy, of taking actions ``a_ph``
                                            | in states ``x_ph``.
            ``logp_pi``   (batch,)          | Gives log probability, according to
                                            | the policy, of the action sampled by
                                            | ``pi``.
            ``info``      N/A               | A dict of any intermediate quantities
                                            | (from calculating the policy or log 
                                            | probabilities) which are needed for
                                            | analytically computing KL divergence.
                                            | (eg sufficient statistics of the
                                            | distributions)
            ``info_phs``  N/A               | A dict of placeholders for old values
                                            | of the entries in ``info``.
            ``d_kl``      ()                | A symbol for computing the mean KL
                                            | divergence between the current policy
                                            | (``pi``) and the old policy (as 
                                            | specified by the inputs to 
                                            | ``info_phs``) over the batch of 
                                            | states given in ``x_ph``.
            ``v``         (batch,)          | Gives the value estimate for states
                                            | in ``x_ph``. (Critical: make sure 
                                            | to flatten this!)
            ============  ================  ========================================

        ac_kwargs (dict): Any kwargs appropriate for the actor_critic 
            function you provided to TRPO.

        seed (int): Seed for random number generators.

        steps_per_epoch (int): Number of steps of interaction (state-action pairs) 
            for the agent and the environment in each epoch.

        epochs (int): Number of epochs of interaction (equivalent to
            number of policy updates) to perform.

        gamma (float): Discount factor. (Always between 0 and 1.)

        delta (float): KL-divergence limit for TRPO / NPG update. 
            (Should be small for stability. Values like 0.01, 0.05.)

        vf_lr (float): Learning rate for value function optimizer.

        train_v_iters (int): Number of gradient descent steps to take on 
            value function per epoch.

        damping_coeff (float): Artifact for numerical stability, should be 
            smallish. Adjusts Hessian-vector product calculation:
            
            .. math:: Hv \\rightarrow (\\alpha I + H)v

            where :math:`\\alpha` is the damping coefficient. 
            Probably don't play with this hyperparameter.

        cg_iters (int): Number of iterations of conjugate gradient to perform. 
            Increasing this will lead to a more accurate approximation
            to :math:`H^{-1} g`, and possibly slightly-improved performance,
            but at the cost of slowing things down. 

            Also probably don't play with this hyperparameter.

        backtrack_iters (int): Maximum number of steps allowed in the 
            backtracking line search. Since the line search usually doesn't 
            backtrack, and usually only steps back once when it does, this
            hyperparameter doesn't often matter.

        backtrack_coeff (float): How far back to step during backtracking line
            search. (Always between 0 and 1, usually above 0.5.)

        lam (float): Lambda for GAE-Lambda. (Always between 0 and 1,
            close to 1.)

        max_ep_len (int): Maximum length of trajectory / episode / rollout.

        logger_kwargs (dict): Keyword args for EpochLogger.

        save_freq (int): How often (in terms of gap between epochs) to save
            the current policy and value function.

        algo: Either 'trpo' or 'npg': this code supports both, since they are 
            almost the same.

    """

    logger = EpochLogger(**logger_kwargs)
    logger.save_config(locals())

    seed += 10000 * proc_id()
    tf.set_random_seed(seed)
    np.random.seed(seed)

    env = env_fn()
    obs_dim = env.observation_space.shape
    act_dim = env.action_space.shape
    
    # Share information about action space with policy architecture
    ac_kwargs['action_space'] = env.action_space

    # Inputs to computation graph
    x_ph, a_ph = core.placeholders_from_spaces(env.observation_space, env.action_space)
    adv_ph, ret_ph, logp_old_ph = core.placeholders(None, None, None)

    # Main outputs from computation graph, plus placeholders for old pdist (for KL)
    pi, logp, logp_pi, info, info_phs, d_kl, v = actor_critic(x_ph, a_ph, **ac_kwargs)

    # Need all placeholders in *this* order later (to zip with data from buffer)
    all_phs = [x_ph, a_ph, adv_ph, ret_ph, logp_old_ph] + core.values_as_sorted_list(info_phs)

    # Every step, get: action, value, logprob, & info for pdist (for computing kl div)
    get_action_ops = [pi, v, logp_pi] + core.values_as_sorted_list(info)

    # Experience buffer
    local_steps_per_epoch = int(steps_per_epoch / num_procs())
    info_shapes = {k: v.shape.as_list()[1:] for k,v in info_phs.items()}
    buf = GAEBuffer(obs_dim, act_dim, local_steps_per_epoch, info_shapes, gamma, lam)

    # Count variables
    var_counts = tuple(core.count_vars(scope) for scope in ['pi', 'v'])
    logger.log('\nNumber of parameters: \t pi: %d, \t v: %d\n'%var_counts)

    # TRPO losses
    ratio = tf.exp(logp - logp_old_ph)          # pi(a|s) / pi_old(a|s)
    pi_loss = -tf.reduce_mean(ratio * adv_ph)
    v_loss = tf.reduce_mean((ret_ph - v)**2)

    # Optimizer for value function
    train_vf = MpiAdamOptimizer(learning_rate=vf_lr).minimize(v_loss)

    # Symbols needed for CG solver
    pi_params = core.get_vars('pi')
    gradient = core.flat_grad(pi_loss, pi_params)
    v_ph, hvp = core.hessian_vector_product(d_kl, pi_params)
    if damping_coeff > 0:
        hvp += damping_coeff * v_ph

    # Symbols for getting and setting params
    get_pi_params = core.flat_concat(pi_params)
    set_pi_params = core.assign_params_from_flat(v_ph, pi_params)

    sess = tf.Session()
    sess.run(tf.global_variables_initializer())

    # Sync params across processes
    sess.run(sync_all_params())

    # Setup model saving
    logger.setup_tf_saver(sess, inputs={'x': x_ph}, outputs={'pi': pi, 'v': v})

    def cg(Ax, b):
        """
        Conjugate gradient algorithm
        (see https://en.wikipedia.org/wiki/Conjugate_gradient_method)
        """
        x = np.zeros_like(b)
        r = b.copy() # Note: should be 'b - Ax(x)', but for x=0, Ax(x)=0. Change if doing warm start.
        p = r.copy()
        r_dot_old = np.dot(r,r)
        for _ in range(cg_iters):
            z = Ax(p)
            alpha = r_dot_old / (np.dot(p, z) + EPS)
            x += alpha * p
            r -= alpha * z
            r_dot_new = np.dot(r,r)
            p = r + (r_dot_new / r_dot_old) * p
            r_dot_old = r_dot_new
        return x

    def update():
        # Prepare hessian func, gradient eval
        inputs = {k:v for k,v in zip(all_phs, buf.get())}
        Hx = lambda x : mpi_avg(sess.run(hvp, feed_dict={**inputs, v_ph: x}))
        g, pi_l_old, v_l_old = sess.run([gradient, pi_loss, v_loss], feed_dict=inputs)
        g, pi_l_old = mpi_avg(g), mpi_avg(pi_l_old)

        # Core calculations for TRPO or NPG
        x = cg(Hx, g)
        alpha = np.sqrt(2*delta/(np.dot(x, Hx(x))+EPS))
        old_params = sess.run(get_pi_params)

        def set_and_eval(step):
            sess.run(set_pi_params, feed_dict={v_ph: old_params - alpha * x * step})
            return mpi_avg(sess.run([d_kl, pi_loss], feed_dict=inputs))

        if algo=='npg':
            # npg has no backtracking or hard kl constraint enforcement
            kl, pi_l_new = set_and_eval(step=1.)

        elif algo=='trpo':
            # trpo augments npg with backtracking line search, hard kl
            for j in range(backtrack_iters):
                kl, pi_l_new = set_and_eval(step=backtrack_coeff**j)
                if kl <= delta and pi_l_new <= pi_l_old:
                    logger.log('Accepting new params at step %d of line search.'%j)
                    logger.store(BacktrackIters=j)
                    break

                if j==backtrack_iters-1:
                    logger.log('Line search failed! Keeping old params.')
                    logger.store(BacktrackIters=j)
                    kl, pi_l_new = set_and_eval(step=0.)

        # Value function updates
        for _ in range(train_v_iters):
            sess.run(train_vf, feed_dict=inputs)
        v_l_new = sess.run(v_loss, feed_dict=inputs)

        # Log changes from update
        logger.store(LossPi=pi_l_old, LossV=v_l_old, KL=kl,
                     DeltaLossPi=(pi_l_new - pi_l_old),
                     DeltaLossV=(v_l_new - v_l_old))

    start_time = time.time()
    o, ep_ret, ep_len = env.reset(), 0, 0

    # Main loop: collect experience in env and update/log each epoch
    for epoch in range(epochs):
        for t in range(local_steps_per_epoch):
            agent_outs = sess.run(get_action_ops, feed_dict={x_ph: o.reshape(1,-1)})
            a, v_t, logp_t, info_t = agent_outs[0][0], agent_outs[1], agent_outs[2], agent_outs[3:]

            o2, r, d, _ = env.step(a)
            ep_ret += r
            ep_len += 1

            # save and log
            buf.store(o, a, r, v_t, logp_t, info_t)
            logger.store(VVals=v_t)

            # Update obs (critical!)
            o = o2

            terminal = d or (ep_len == max_ep_len)
            if terminal or (t==local_steps_per_epoch-1):
                if not(terminal):
                    print('Warning: trajectory cut off by epoch at %d steps.'%ep_len)
                # if trajectory didn't reach terminal state, bootstrap value target
                last_val = 0 if d else sess.run(v, feed_dict={x_ph: o.reshape(1,-1)})
                buf.finish_path(last_val)
                if terminal:
                    # only save EpRet / EpLen if trajectory finished
                    logger.store(EpRet=ep_ret, EpLen=ep_len)
                o, ep_ret, ep_len = env.reset(), 0, 0

        # Save model
        if (epoch % save_freq == 0) or (epoch == epochs-1):
            logger.save_state({'env': env}, None)

        # Perform TRPO or NPG update!
        update()

        # Log info about epoch
        logger.log_tabular('Epoch', epoch)
        logger.log_tabular('EpRet', with_min_and_max=True)
        logger.log_tabular('EpLen', average_only=True)
        logger.log_tabular('VVals', with_min_and_max=True)
        logger.log_tabular('TotalEnvInteracts', (epoch+1)*steps_per_epoch)
        logger.log_tabular('LossPi', average_only=True)
        logger.log_tabular('LossV', average_only=True)
        logger.log_tabular('DeltaLossPi', average_only=True)
        logger.log_tabular('DeltaLossV', average_only=True)
        logger.log_tabular('KL', average_only=True)
        if algo=='trpo':
            logger.log_tabular('BacktrackIters', average_only=True)
        logger.log_tabular('Time', time.time()-start_time)
        logger.dump_tabular()
Exemple #21
0
def ppo(env_fn,
        actor_critic=core.MLPActorCritic,
        ac_kwargs=dict(),
        seed=0,
        steps_per_epoch=4000,
        epochs=50,
        gamma=0.99,
        clip_ratio=0.2,
        pi_lr=3e-4,
        vf_lr=1e-3,
        train_pi_iters=80,
        train_v_iters=80,
        lam=0.97,
        max_ep_len=1000,
        target_kl=0.01,
        logger_kwargs=dict(),
        save_freq=10):
    """
    Proximal Policy Optimization (by clipping),

    with early stopping based on approximate KL

    Args:
        env_fn : A function which creates a copy of the environment.
            The environment must satisfy the OpenAI Gym API.

        actor_critic: The constructor method for a PyTorch Module with a
            ``step`` method, an ``act`` method, a ``pi`` module, and a ``v``
            module. The ``step`` method should accept a batch of observations
            and return:

            ===========  ================  ======================================
            Symbol       Shape             Description
            ===========  ================  ======================================
            ``a``        (batch, act_dim)  | Numpy array of actions for each
                                           | observation.
            ``v``        (batch,)          | Numpy array of value estimates
                                           | for the provided observations.
            ``logp_a``   (batch,)          | Numpy array of log probs for the
                                           | actions in ``a``.
            ===========  ================  ======================================

            The ``act`` method behaves the same as ``step`` but only returns ``a``.

            The ``pi`` module's forward call should accept a batch of
            observations and optionally a batch of actions, and return:

            ===========  ================  ======================================
            Symbol       Shape             Description
            ===========  ================  ======================================
            ``pi``       N/A               | Torch Distribution object, containing
                                           | a batch of distributions describing
                                           | the policy for the provided observations.
            ``logp_a``   (batch,)          | Optional (only returned if batch of
                                           | actions is given). Tensor containing
                                           | the log probability, according to
                                           | the policy, of the provided actions.
                                           | If actions not given, will contain
                                           | ``None``.
            ===========  ================  ======================================

            The ``v`` module's forward call should accept a batch of observations
            and return:

            ===========  ================  ======================================
            Symbol       Shape             Description
            ===========  ================  ======================================
            ``v``        (batch,)          | Tensor containing the value estimates
                                           | for the provided observations. (Critical:
                                           | make sure to flatten this!)
            ===========  ================  ======================================


        ac_kwargs (dict): Any kwargs appropriate for the ActorCritic object
            you provided to PPO.

        seed (int): Seed for random number generators.

        steps_per_epoch (int): Number of steps of interaction (state-action pairs)
            for the agent and the environment in each epoch.

        epochs (int): Number of epochs of interaction (equivalent to
            number of policy updates) to perform.

        gamma (float): Discount factor. (Always between 0 and 1.)

        clip_ratio (float): Hyperparameter for clipping in the policy objective.
            Roughly: how far can the new policy go from the old policy while
            still profiting (improving the objective function)? The new policy
            can still go farther than the clip_ratio says, but it doesn't help
            on the objective anymore. (Usually small, 0.1 to 0.3.) Typically
            denoted by :math:`\epsilon`.

        pi_lr (float): Learning rate for policy optimizer.

        vf_lr (float): Learning rate for value function optimizer.

        train_pi_iters (int): Maximum number of gradient descent steps to take
            on policy loss per epoch. (Early stopping may cause optimizer
            to take fewer than this.)

        train_v_iters (int): Number of gradient descent steps to take on
            value function per epoch.

        lam (float): Lambda for GAE-Lambda. (Always between 0 and 1,
            close to 1.)

        max_ep_len (int): Maximum length of trajectory / episode / rollout.

        target_kl (float): Roughly what KL divergence we think is appropriate
            between new and old policies after an update. This will get used
            for early stopping. (Usually small, 0.01 or 0.05.)

        logger_kwargs (dict): Keyword args for EpochLogger.

        save_freq (int): How often (in terms of gap between epochs) to save
            the current policy and value function.

    """

    # Special function to avoid certain slowdowns from PyTorch + MPI combo.
    setup_pytorch_for_mpi()

    # Set up logger and save configuration
    logger = EpochLogger(**logger_kwargs)
    logger.save_config(locals())

    # Random seed
    seed += 10000 * proc_id()
    torch.manual_seed(seed)
    np.random.seed(seed)

    # Instantiate environment
    env = env_fn()
    obs_dim = env.observation_space.shape
    act_dim = env.action_space.shape

    # Create actor-critic module
    if inspect.isclass(actor_critic):
        ac = actor_critic(env.observation_space, env.action_space, **ac_kwargs)
    else:
        ac = actor_critic
    # Sync params across processes
    sync_params(ac)

    # Count variables
    var_counts = tuple(core.count_vars(module) for module in [ac.pi, ac.v])
    logger.log('\nNumber of parameters: \t pi: %d, \t v: %d\n' % var_counts)

    # Set up experience buffer
    local_steps_per_epoch = int(steps_per_epoch / num_procs())
    buf = PPOBuffer(obs_dim, act_dim, local_steps_per_epoch, gamma, lam)

    # Set up function for computing PPO policy loss
    def compute_loss_pi(data):
        obs, act, adv, logp_old = data['obs'], data['act'], data['adv'], data[
            'logp']

        # Policy loss
        pi, logp = ac.pi(obs, act)
        ratio = torch.exp(logp - logp_old)
        clip_adv = torch.clamp(ratio, 1 - clip_ratio, 1 + clip_ratio) * adv
        loss_pi = -(torch.min(ratio * adv, clip_adv)).mean()

        # Useful extra info
        approx_kl = (logp_old - logp).mean().item()
        ent = pi.entropy().mean().item()
        clipped = ratio.gt(1 + clip_ratio) | ratio.lt(1 - clip_ratio)
        clipfrac = torch.as_tensor(clipped, dtype=torch.float32).mean().item()
        pi_info = dict(kl=approx_kl, ent=ent, cf=clipfrac)

        return loss_pi, pi_info

    # Set up function for computing value loss
    def compute_loss_v(data):
        obs, ret = data['obs'], data['ret']
        return ((ac.v(obs) - ret)**2).mean()

    # Set up optimizers for policy and value function
    pi_optimizer = Adam(ac.pi.parameters(), lr=pi_lr)
    vf_optimizer = Adam(ac.v.parameters(), lr=vf_lr)

    # Set up model saving
    logger.setup_pytorch_saver(ac)

    def update():
        data = buf.get()

        pi_l_old, pi_info_old = compute_loss_pi(data)
        pi_l_old = pi_l_old.item()
        v_l_old = compute_loss_v(data).item()

        # Train policy with multiple steps of gradient descent
        for i in range(train_pi_iters):
            pi_optimizer.zero_grad()
            loss_pi, pi_info = compute_loss_pi(data)
            kl = mpi_avg(pi_info['kl'])
            if kl > 1.5 * target_kl:
                logger.log(
                    'Early stopping at step %d due to reaching max kl.' % i)
                break
            loss_pi.backward()
            mpi_avg_grads(ac.pi)  # average grads across MPI processes
            pi_optimizer.step()

        logger.store(StopIter=i)

        # Value function learning
        for i in range(train_v_iters):
            vf_optimizer.zero_grad()
            loss_v = compute_loss_v(data)
            loss_v.backward()
            mpi_avg_grads(ac.v)  # average grads across MPI processes
            vf_optimizer.step()

        # Log changes from update
        kl, ent, cf = pi_info['kl'], pi_info_old['ent'], pi_info['cf']
        logger.store(LossPi=pi_l_old,
                     LossV=v_l_old,
                     KL=kl,
                     Entropy=ent,
                     ClipFrac=cf,
                     DeltaLossPi=(loss_pi.item() - pi_l_old),
                     DeltaLossV=(loss_v.item() - v_l_old))

    # Prepare for interaction with environment
    start_time = time.time()
    o, ep_ret, ep_len = env.reset(), 0, 0

    # Main loop: collect experience in env and update/log each epoch
    for epoch in range(epochs):
        for t in range(local_steps_per_epoch):
            a, v, logp = ac.step(torch.as_tensor(o, dtype=torch.float32))

            next_o, r, d, _ = env.step(a)
            ep_ret += r
            ep_len += 1

            # save and log
            buf.store(o, a, r, v, logp)
            logger.store(VVals=v)

            # Update obs (critical!)
            o = next_o

            timeout = ep_len == max_ep_len
            terminal = d or timeout
            epoch_ended = t == local_steps_per_epoch - 1

            if terminal or epoch_ended:
                if epoch_ended and not (terminal):
                    print('Warning: trajectory cut off by epoch at %d steps.' %
                          ep_len,
                          flush=True)
                # if trajectory didn't reach terminal state, bootstrap value target
                if timeout or epoch_ended:
                    _, v, _ = ac.step(torch.as_tensor(o, dtype=torch.float32))
                else:
                    v = 0
                buf.finish_path(v)
                if terminal:
                    # only save EpRet / EpLen if trajectory finished
                    logger.store(EpRet=ep_ret, EpLen=ep_len)
                o, ep_ret, ep_len = env.reset(), 0, 0

        # Save model
        if (epoch % save_freq == 0) or (epoch == epochs - 1):
            logger.save_state({'env': env}, None)  # current state
            logger.save_state({'env': env}, epoch)  # for rendering

        # Perform PPO update!
        update()

        # Log info about epoch
        logger.log_tabular('Epoch', epoch)
        logger.log_tabular('EpRet', with_min_and_max=True)
        logger.log_tabular('EpLen', average_only=True)
        logger.log_tabular('VVals', with_min_and_max=True)
        logger.log_tabular('TotalEnvInteracts', (epoch + 1) * steps_per_epoch)
        logger.log_tabular('LossPi', average_only=True)
        logger.log_tabular('LossV', average_only=True)
        logger.log_tabular('DeltaLossPi', average_only=True)
        logger.log_tabular('DeltaLossV', average_only=True)
        logger.log_tabular('Entropy', average_only=True)
        logger.log_tabular('KL', average_only=True)
        logger.log_tabular('ClipFrac', average_only=True)
        logger.log_tabular('StopIter', average_only=True)
        logger.log_tabular('Time', time.time() - start_time)
        logger.dump_tabular()

    logger.output_file.close()
def vpg(env,
        ac_kwargs=None,
        seed=0,
        steps_per_epoch=4000,
        epochs=50,
        gamma=0.99,
        lam=0.97,
        max_ep_len=1000,
        save_freq=10):

    seed += 10000 * proc_id()
    tf.random.set_seed(seed)
    np.random.seed(seed)
    # Create actor-critic agent and synchronize it
    ac_kwargs['action_space'] = env.action_space

    actor_critic = ActorCritic(**ac_kwargs)

    # Experience buffer
    obs_dim = env.observation_space.shape
    act_dim = env.action_space.shape
    local_steps_per_epoch = int(steps_per_epoch / num_procs())
    buf = VPGBuffer(obs_dim, act_dim, local_steps_per_epoch, gamma, lam)
    """
  Main loop: collect experience in env and update/log each epoch
  """

    # o for observation, r for reward, d for done
    o, r, d, ep_ret, ep_len = env.reset(), 0, False, 0, 0

    all_ep_ret = []
    summary_ep_ret = []
    totalEnvInteracts = []
    for epoch in range(epochs):
        for t in range(local_steps_per_epoch):
            a, logp_t, v_t = actor_critic(o.reshape(1, -1))

            # save and log
            a = a.numpy()[0]
            buf.store(o, a, r, v_t, logp_t)

            o, r, d, _ = env.step(a)
            ep_ret += r
            ep_len += 1

            terminal = d or (ep_len == max_ep_len)
            if terminal or (t == local_steps_per_epoch - 1):
                if not (terminal) and proc_id() == 0:
                    print('Warning: trajectory cut off by epoch at %d steps.' %
                          ep_len)
                # if trajectory didn't reach terminal state, bootstrap value target
                last_val = r if d else v_t
                buf.finish_path(last_val)

                if terminal:
                    all_ep_ret.append(ep_ret)
                # reset environment
                o, r, d, ep_ret, ep_len = env.reset(), 0, False, 0, 0

        # Perform VPG update!
        actor_critic.update(buf)
        mean, std = mpi_statistics_scalar(all_ep_ret)
        all_ep_ret = []
        if proc_id() == 0:
            print(f'epoch {epoch}: mean {mean}, std {std}')
        summary_ep_ret.append(mean)
        totalEnvInteracts.append((epoch + 1) * steps_per_epoch)

    if proc_id() == 0:
        plt.plot(totalEnvInteracts, summary_ep_ret)
        plt.grid(True)
        plt.show()