Exemple #1
0
def main(args):
    parser = argparse.ArgumentParser(
        description=("Run deep models for visual semantic role segmentation "
                     "(or detection)"))
    parser.add_argument("mode", help="Mode to run model in (e.g. 'train')")
    parser.add_argument("-s",
                        "--save_dir",
                        help="directory for saving the model",
                        default="saved_models/%s" %
                        dt.datetime.now().strftime("%Y_%m_%d_%H_%M_%S"))
    parser.add_argument("-e",
                        "--epochs",
                        help="number of epochs for training",
                        type=int,
                        default=50)
    parser.add_argument("-p",
                        "--save_per",
                        help="epochs to wait before saving",
                        type=int,
                        default=5)
    parser.add_argument("-l",
                        "--learn_rate",
                        help="learning rate",
                        type=float,
                        default=0.001)
    parser.add_argument("-c",
                        "--cuda",
                        type=int,
                        nargs="+",
                        help="ids of gpus to use during training",
                        default=[])
    parser.add_argument("-f",
                        "--fake",
                        action="store_true",
                        help=("flag to use fake data that loads quickly (for"
                              "development purposes)"))
    parser.add_argument(
        "--net",
        help="file in which model is stored. Used in test mode.",
        default=None)
    cfg = parser.parse_args(args)

    if cfg.mode == 'train':
        model = md.CtxBB()
        if cfg.fake:
            dataloader = get_fake_loader()
        else:
            dataloader = ld.get_loader("vcoco_train", ld.COCO_IMGDIR)
        trainer = md.BasicTrainer(model, dataloader, **vars(cfg))
        logging.getLogger(__name__).info("Beginning Training...")
        trainer.train(cfg.epochs)
    elif cfg.mode == 'test':
        checkpoint = torch.load(cfg.net)
        model = checkpoint["model"]
        evaluator = ev.Evaluator(**vars(cfg))
        ev.do_eval(evaluator, model, "vcoco_val", cfg.save_dir)

    else:
        logging.getLogger(__name__).error("Invalid mode '%s'" % str(cfg.mode))
        sys.exit(1)
Exemple #2
0
def save_trainer(trainer):
    # save the model if needed
    if mt.should_do(trainer.epoch, trainer.save_per) and \
            trainer.save_dir is not None:
        logging.getLogger(__name__).info("Saving training file...")
        torch.save(
            trainer,
            os.path.join(trainer.save_dir, "trainer_%d.trn" % trainer.epoch))
Exemple #3
0
 def train(self, epochs):
     self.model.train()
     logging.getLogger(__name__).info("Starting training at epoch %d" %
                                      (self.epoch + 1))
     for self.epoch in range(self.epoch + 1, self.epoch + 1 + epochs):
         logging.getLogger(__name__).info("Running epoch %d" % self.epoch)
         # Make a full pass over the training set.
         for self.iteration, data in enumerate(self.dataloader, start=1):
             self.handle_batch(data)
             self.run_batch_callbacks()
         self.run_epoch_callbacks()
         del self.epoch_data[:]  # Clear the list of epoch data
Exemple #4
0
#!/usr/bin/python
# -*- coding: utf-8 -*-

import configparser
import sys
import telebot
import time
from watchfile import configuracion
from watchfile import fc
from utils import mylogger

logger = mylogger.getLogger()

# DATOS DEL FICHERO DE CONFIGURACION
config = configuracion['GENERAL']
primerEnvio = config['PrimerEnvio']
archivo = config['fichero']
parametros = configuracion['TELEGRAM']
Token = parametros['Token']
groupId = parametros['Id']

# Combinamos la declaración del Token con la función de la API
tb = telebot.TeleBot(Token)


# ENVIO DEL MENSAJE
def env_archivo(f):
    tb.send_message(groupId, "Actualizado cuadre")
    doc = open(f, 'rb')
    tb.send_document(groupId, doc)
Exemple #5
0
def print_loss(trainer):
    logging.getLogger(__name__).info(
        "---> After Epoch #%d: Loss=%.8f" %
        (trainer.epoch,
         sum(trainer.local_history) / len(trainer.local_history)))
Exemple #6
0
def main(args):
    parser = argparse.ArgumentParser(
        description=("Run deep models for visual semantic role segmentation "
                     "(or detection)"))
    parser.add_argument("mode", help="Mode to run model in (e.g. 'train')")
    parser.add_argument("-s",
                        "--save_dir",
                        help="directory for saving the model",
                        default="saved_models/%s" %
                        dt.datetime.now().strftime("%Y_%m_%d_%H_%M_%S"))
    parser.add_argument("-e",
                        "--epochs",
                        help="number of epochs for training",
                        type=int,
                        default=50)
    parser.add_argument("-p",
                        "--save_per",
                        help="epochs to wait before saving",
                        type=int,
                        default=5)
    parser.add_argument("-l",
                        "--learn_rate",
                        help="learning rate",
                        type=float,
                        default=0.001)
    parser.add_argument("-c",
                        "--cuda",
                        type=int,
                        nargs="+",
                        help="ids of gpus to use during training",
                        default=[])
    parser.add_argument(
        "--net",
        help="file in which model is stored. Used in test mode.",
        default=None)
    parser.add_argument(
        "--coco_root",
        help=("path to coco directory, which must have an 'images'"
              "subfolder with images inside"),
        default=ld.COCO_ROOT)
    parser.add_argument(
        "--vcoco_root",
        help=("path to v-coco directory, which must have a 'coco'"
              "subfolder with another subfolder containing"
              "images/train2014 and images/val2014"),
        default=ld.VCOCO_ROOT)
    cfg = parser.parse_args(args)

    pathman = ld.PathManager(coco_root=cfg.coco_root,
                             vcoco_root=cfg.vcoco_root)

    if cfg.mode == 'train':
        vcoco_all = vu.load_vcoco("vcoco_train")
        categories = [x["name"] for x in vu.load_coco().cats.itervalues()]
        translator = ld.VCocoTranslator(vcoco_all, categories)
        n_action_classes = translator.num_actions
        n_action_nonagent_roles = translator.num_action_nonagent_roles
        dataloader = ld.RoiVCocoBoxes("vcoco_train", pathman.coco_root,
                                      pathman.vcoco_root)
        classes = dataloader.get_classes()
        model = fhoi.HoiModel(
            classes,
            n_action_classes,
            n_action_nonagent_roles,
            faster_rcnn_command_line=["NCLASSES", len(classes)],
            cuda=cfg.cuda)
        trainer = thoi.HoiTrainer(model, dataloader, **vars(cfg))
        logging.getLogger(__name__).info("Beginning Training...")
        trainer.train(cfg.epochs)
        """
    # TODO build this test code.
    elif cfg.mode == 'test':
        checkpoint = torch.load(cfg.net)
        model = checkpoint["model"]
        evaluator = ev.Evaluator(**vars(cfg))
        ev.do_eval(evaluator, model, "vcoco_val", cfg.save_dir)
        """
    else:
        logging.getLogger(__name__).error("Invalid mode '%s'" % str(cfg.mode))
        sys.exit(1)