def initialize_model_from_cfg():
    def create_input_blobs(net_def):
        for op in net_def.op:
            for blob_in in op.input:
                if not workspace.HasBlob(blob_in):
                    workspace.CreateBlob(blob_in)

    model = model_builder.create(
        cfg.MODEL.TYPE,
        train=False,
        init_params=cfg.TEST.INIT_RANDOM_VARS_BEFORE_LOADING)
    model_builder.add_inputs(model)
    if cfg.TEST.INIT_RANDOM_VARS_BEFORE_LOADING:
        workspace.RunNetOnce(model.param_init_net)
    net_utils.initialize_from_weights_file(model,
                                           cfg.TEST.WEIGHTS,
                                           broadcast=False)
    create_input_blobs(model.net.Proto())
    workspace.CreateNet(model.net)
    workspace.CreateNet(model.conv_body_net)
    if cfg.MODEL.MASK_ON:
        create_input_blobs(model.mask_net.Proto())
        workspace.CreateNet(model.mask_net)
    if cfg.MODEL.KEYPOINTS_ON:
        create_input_blobs(model.keypoint_net.Proto())
        workspace.CreateNet(model.keypoint_net)
    return model
Exemple #2
0
def test_retinanet(ind_range=None):
    """
    Test RetinaNet model either on the entire dataset or the subset of dataset
    specified by the index range
    """
    assert cfg.RETINANET.RETINANET_ON, \
        'RETINANET_ON must be set for testing RetinaNet model'
    output_dir = get_output_dir(training=False)
    dataset = JsonDataset(cfg.TEST.DATASET)
    roidb = dataset.get_roidb()
    if ind_range is not None:
        start, end = ind_range
        roidb = roidb[start:end]
    # Create and load the model
    model = model_builder.create(cfg.MODEL.TYPE, train=False)
    if cfg.TEST.WEIGHTS:
        nu.initialize_from_weights_file(
            model, cfg.TEST.WEIGHTS, broadcast=False
        )
    model_builder.add_inference_inputs(model)
    workspace.CreateNet(model.net)
    # Compute the detections
    all_boxes = im_list_detections(model, roidb)
    # Save the detections
    cfg_yaml = yaml.dump(cfg)
    if ind_range is not None:
        det_name = 'detection_range_%s_%s.pkl' % tuple(ind_range)
    else:
        det_name = 'detections.pkl'
    det_file = os.path.join(output_dir, det_name)
    save_object(
        dict(all_boxes=all_boxes, cfg=cfg_yaml),
        det_file)
    logger.info('Wrote detections to: {}'.format(os.path.abspath(det_file)))
    return all_boxes
def initialize_model_from_cfg():
    def create_input_blobs(net_def):
        for op in net_def.op:
            for blob_in in op.input:
                if not workspace.HasBlob(blob_in):
                    workspace.CreateBlob(blob_in)

    model = model_builder.create(
        cfg.MODEL.TYPE, train=False,
        init_params=cfg.TEST.INIT_RANDOM_VARS_BEFORE_LOADING)
    model_builder.add_inputs(model)
    if cfg.TEST.INIT_RANDOM_VARS_BEFORE_LOADING:
        workspace.RunNetOnce(model.param_init_net)
    net_utils.initialize_from_weights_file(
        model, cfg.TEST.WEIGHTS, broadcast=False)
    create_input_blobs(model.net.Proto())
    workspace.CreateNet(model.net)
    workspace.CreateNet(model.conv_body_net)
    if cfg.MODEL.MASK_ON:
        create_input_blobs(model.mask_net.Proto())
        workspace.CreateNet(model.mask_net)
    if cfg.MODEL.KEYPOINTS_ON:
        create_input_blobs(model.keypoint_net.Proto())
        workspace.CreateNet(model.keypoint_net)
    return model
Exemple #4
0
def generate_rpn_on_range(ind_range=None):
    assert cfg.TEST.WEIGHTS != '', \
        'TEST.WEIGHTS must be set to the model file to test'
    assert cfg.TEST.DATASET != '', \
        'TEST.DATASET must be set to the dataset name to test'
    assert cfg.MODEL.RPN_ONLY or cfg.MODEL.FASTER_RCNN

    im_list, start_ind, end_ind, total_num_images = get_image_list(ind_range)
    output_dir = get_output_dir(training=False)
    logger.info(
        'Output will be saved to: {:s}'.format(os.path.abspath(output_dir)))

    model = model_builder.create(cfg.MODEL.TYPE, train=False)
    model_builder.add_inputs(model)
    nu.initialize_from_weights_file(model, cfg.TEST.WEIGHTS)
    workspace.CreateNet(model.net)

    boxes, scores, ids = im_list_proposals(
        model,
        im_list,
        start_ind=start_ind,
        end_ind=end_ind,
        total_num_images=total_num_images)

    cfg_yaml = yaml.dump(cfg)
    if ind_range is not None:
        rpn_name = 'rpn_proposals_range_%s_%s.pkl' % tuple(ind_range)
    else:
        rpn_name = 'rpn_proposals.pkl'
    rpn_file = os.path.join(output_dir, rpn_name)
    robust_pickle_dump(
        dict(boxes=boxes, scores=scores, ids=ids, cfg=cfg_yaml), rpn_file)
    logger.info('Wrote RPN proposals to {}'.format(os.path.abspath(rpn_file)))
    return boxes, scores, ids, rpn_file
Exemple #5
0
def initialize_model_from_cfg():
    """Initialize a model from the global cfg. Loads test-time weights and
    creates the networks in the Caffe2 workspace.
    """
    model = model_builder.create(cfg.MODEL.TYPE, train=False)
    net_utils.initialize_from_weights_file(
        model, cfg.TEST.WEIGHTS, broadcast=False
    )
    model_builder.add_inference_inputs(model)
    workspace.CreateNet(model.net)
    workspace.CreateNet(model.conv_body_net)
    if cfg.MODEL.MASK_ON:
        workspace.CreateNet(model.mask_net)
    if cfg.MODEL.KEYPOINTS_ON:
        workspace.CreateNet(model.keypoint_net)
    return model
Exemple #6
0
def initialize_model_from_cfg():
    """Initialize a model from the global cfg. Loads test-time weights and
    creates the networks in the Caffe2 workspace.
    """
    model = model_builder.create(cfg.MODEL.TYPE, train=False)
    net_utils.initialize_from_weights_file(
        model, cfg.TEST.WEIGHTS, broadcast=False
    )
    model_builder.add_inference_inputs(model)
    workspace.CreateNet(model.net)
    workspace.CreateNet(model.conv_body_net)
    if cfg.MODEL.MASK_ON:
        workspace.CreateNet(model.mask_net)
    if cfg.MODEL.KEYPOINTS_ON:
        workspace.CreateNet(model.keypoint_net)
    return model
def test_retinanet(ind_range=None):
    """
    Test RetinaNet model either on the entire dataset or the subset of dataset
    specified by the index range
    """
    assert cfg.RETINANET.RETINANET_ON, \
        'RETINANET_ON must be set for testing RetinaNet model'
    output_dir = get_output_dir(training=False)
    dataset = JsonDataset(cfg.TEST.DATASET)
    im_list = dataset.get_roidb()
    if ind_range is not None:
        start, end = ind_range
        im_list = im_list[start:end]
        logger.info('Testing on roidb range: {}-{}'.format(start, end))
    else:
        # if testing over the whole dataset, use the NUM_TEST_IMAGES setting
        # the NUM_TEST_IMAGES could be over a small set of images for quick
        # debugging purposes
        im_list = im_list[0:cfg.TEST.NUM_TEST_IMAGES]

    model = model_builder.create(cfg.MODEL.TYPE, train=False)
    if cfg.TEST.WEIGHTS:
        nu.initialize_from_weights_file(model,
                                        cfg.TEST.WEIGHTS,
                                        broadcast=False)
    model_builder.add_inference_inputs(model)
    workspace.CreateNet(model.net)
    boxes, scores, classes, image_ids = im_list_detections(
        model, im_list[0:cfg.TEST.NUM_TEST_IMAGES])

    cfg_yaml = yaml.dump(cfg)
    if ind_range is not None:
        det_name = 'retinanet_detections_range_%s_%s.pkl' % tuple(ind_range)
    else:
        det_name = 'retinanet_detections.pkl'
    det_file = os.path.join(output_dir, det_name)
    save_object(
        dict(boxes=boxes,
             scores=scores,
             classes=classes,
             ids=image_ids,
             cfg=cfg_yaml), det_file)
    logger.info('Wrote detections to: {}'.format(os.path.abspath(det_file)))
    return boxes, scores, classes, image_ids
def test_retinanet(ind_range=None):
    """
    Test RetinaNet model either on the entire dataset or the subset of dataset
    specified by the index range
    """
    assert cfg.RETINANET.RETINANET_ON, \
        'RETINANET_ON must be set for testing RetinaNet model'
    output_dir = get_output_dir(training=False)
    dataset = JsonDataset(cfg.TEST.DATASET)
    im_list = dataset.get_roidb()
    if ind_range is not None:
        start, end = ind_range
        im_list = im_list[start:end]
        logger.info('Testing on roidb range: {}-{}'.format(start, end))
    else:
        # if testing over the whole dataset, use the NUM_TEST_IMAGES setting
        # the NUM_TEST_IMAGES could be over a small set of images for quick
        # debugging purposes
        im_list = im_list[0:cfg.TEST.NUM_TEST_IMAGES]

    model = model_builder.create(cfg.MODEL.TYPE, train=False)
    if cfg.TEST.WEIGHTS:
        nu.initialize_from_weights_file(
            model, cfg.TEST.WEIGHTS, broadcast=False
        )
    model_builder.add_inference_inputs(model)
    workspace.CreateNet(model.net)
    boxes, scores, classes, image_ids = im_list_detections(
        model, im_list[0:cfg.TEST.NUM_TEST_IMAGES])

    cfg_yaml = yaml.dump(cfg)
    if ind_range is not None:
        det_name = 'retinanet_detections_range_%s_%s.pkl' % tuple(ind_range)
    else:
        det_name = 'retinanet_detections.pkl'
    det_file = os.path.join(output_dir, det_name)
    save_object(
        dict(boxes=boxes, scores=scores, classes=classes, ids=image_ids, cfg=cfg_yaml),
        det_file)
    logger.info('Wrote detections to: {}'.format(os.path.abspath(det_file)))
    return boxes, scores, classes, image_ids
Exemple #9
0
def generate_rpn_on_range(ind_range=None):
    """Run inference on all images in a dataset or over an index range of images
    in a dataset using a single GPU.
    """
    assert cfg.TEST.WEIGHTS != '', \
        'TEST.WEIGHTS must be set to the model file to test'
    assert cfg.TEST.DATASET != '', \
        'TEST.DATASET must be set to the dataset name to test'
    assert cfg.MODEL.RPN_ONLY or cfg.MODEL.FASTER_RCNN

    roidb, start_ind, end_ind, total_num_images = get_roidb(ind_range)
    output_dir = get_output_dir(training=False)
    logger.info(
        'Output will be saved to: {:s}'.format(os.path.abspath(output_dir))
    )

    model = model_builder.create(cfg.MODEL.TYPE, train=False)
    nu.initialize_from_weights_file(model, cfg.TEST.WEIGHTS)
    model_builder.add_inference_inputs(model)
    workspace.CreateNet(model.net)

    boxes, scores, ids = generate_proposals_on_roidb(
        model,
        roidb,
        start_ind=start_ind,
        end_ind=end_ind,
        total_num_images=total_num_images
    )

    cfg_yaml = yaml.dump(cfg)
    if ind_range is not None:
        rpn_name = 'rpn_proposals_range_%s_%s.pkl' % tuple(ind_range)
    else:
        rpn_name = 'rpn_proposals.pkl'
    rpn_file = os.path.join(output_dir, rpn_name)
    save_object(
        dict(boxes=boxes, scores=scores, ids=ids, cfg=cfg_yaml), rpn_file
    )
    logger.info('Wrote RPN proposals to {}'.format(os.path.abspath(rpn_file)))
    return boxes, scores, ids, rpn_file