def modified_xception(pre_trained=True):
    xception = AlignedXception(output_stride=16)
    if pre_trained:
        load_pretrained_xception("../pretrained_models/xception.pth", xception)
    else:
        xception = weight_initialization(xception)
    return xception
Exemple #2
0
    def __init__(self, num_classes, initial='kaiming', backbone='resnet'):
        super(DeebLab, self).__init__()
        support_backbone = ['resnet', 'mobilenet', 'drn', 'vgg', 'xception']
        assert support_backbone.__contains__(backbone), 'unsupported backbone'

        if backbone == 'resnet':
            self.backbone = resnet.resnet_101(pre_trained=True)
        elif backbone == 'mobilenet':
            self.backbone = mobilenet.mobilenet_v2(pre_trained=True)
        elif backbone == 'drn':
            self.backbone = drn.drn_d_105(pre_trained=True)
        elif backbone == 'vgg':
            self.backbone = vgg.vgg_16(pre_trained=True)
        elif backbone == 'xception':
            self.backbone = xception.modified_xception(pre_trained=True)

        for m in self.backbone.modules():
            if isinstance(m, nn.Conv2d):
                self.in_dim = m.weight.data.size()[0]

        self.dilation_rates = dilation_rates
        self.padding_series = padding_series
        self.classifier = weight_initialization(
            ASPP_V2(in_dim=self.in_dim, dilation_rates=dilation_rates, padding_rates=padding_series,
                    num_classes=num_classes), init_type=initial)

        # freeze bn layers
        self.freeze_bn()
def vgg_16(pre_trained=True):
    vgg = VGG()
    if pre_trained:
        load_pretrained_vgg("../pretrained_models/vgg_16.pth", vgg)
    else:
        vgg = weight_initialization(vgg)
    return vgg
def resnet_101(pre_trained=True):
    resnet = ResNet(BottleNeck, [3, 4, 23, 3])
    if pre_trained:
        load_pretrained_resnet(model_path, resnet)
    else:
        resnet = weight_initialization(resnet)
    return resnet
def mobilenet_v2(pre_trained=True):
    mbnet = MobileNetV2(block=InvertedResidual, output_stride=16)
    if pre_trained:
        load_pretrained_mobilenet(model_path, mbnet)
    else:
        mbnet = weight_initialization(mbnet)
    return mbnet
Exemple #6
0
def drn_d_105(pre_trained=True):
    """
    drn_d_105
    """
    drn = DRN(BottleNeck, [1, 1, 3, 4, 23, 3, 1, 1])
    if pre_trained:
        load_pretrained_drn("../pretrained_models/drn_d_105-12b40979.pth", drn)
    else:
        drn = weight_initialization(drn)
    return drn
Exemple #7
0
def shufflenet_v2_1x(pre_trained=True):
    shufflenet = ShuffleNetV2(stage_repeat_nums=[4, 8, 4],
                              stage_out_dims=[24, 116, 232, 464, 1024],
                              num_classes=1000)
    if pre_trained:
        load_pretrained_shufflenet("../pretrained_models/shufflenetv2_x1.pth",
                                   shufflenet)
    else:
        shufflenet = weight_initialization(shufflenet)
    return shufflenet
Exemple #8
0
def drn_d_105(pre_trained=True):
    """
    drn_d_105
    """
    drn = DRN(BottleNeck, [1, 1, 3, 4, 23, 3, 1, 1])
    if pre_trained:
        pretrained_dict = torch.load('../pretrained_models/drn_d_105.pth')
        drn.load_state_dict(pretrained_dict)
    else:
        drn = weight_initialization(drn)
    return drn