def sum_clf_test(dataset,
                 config,
                 opts,
                 transfer=False,
                 output_dir=None,
                 checkpoint_name='scv2_aux_ft_gu_last'):
    opts.name = config["name"]
    X_test, y_test, posts_test, pids, human_summaries = dataset
    vocab = None
    if transfer:
        opts.transfer = config["pretrained_lm"]
        checkpoint = load_checkpoint(opts.transfer)
        config["vocab"].update(checkpoint["config"]["vocab"])
        dict_pattern_rename(checkpoint["config"]["model"],
                            {"rnn_": "bottom_rnn_"})
        config["model"].update(checkpoint["config"]["model"])
        vocab = checkpoint["vocab"]

    ####################################################################
    # Load Preprocessed Datasets
    ####################################################################
    if config["preprocessor"] == "twitter":
        preprocessor = twitter_preprocessor()
    else:
        preprocessor = None

    ####################################################################
    # Model
    ####################################################################
    ntokens = 70004
    model = SummarizationClassifier(ntokens, len(set([0, 1])),
                                    **config["model"])
    model.to(opts.device)

    clf_criterion = nn.CrossEntropyLoss()
    lm_criterion = nn.CrossEntropyLoss(ignore_index=0)

    embed_parameters = filter(lambda p: p.requires_grad,
                              model.embed.parameters())
    bottom_parameters = filter(
        lambda p: p.requires_grad,
        chain(model.bottom_rnn.parameters(), model.vocab.parameters()))
    if config["model"]["has_att"]:
        top_parameters = filter(
            lambda p: p.requires_grad,
            chain(model.top_rnn.parameters(), model.attention.parameters(),
                  model.classes.parameters()))
    else:
        top_parameters = filter(
            lambda p: p.requires_grad,
            chain(model.top_rnn.parameters(), model.classes.parameters()))

    embed_optimizer = optim.ASGD(embed_parameters, lr=0.0001)
    rnn_optimizer = optim.ASGD(bottom_parameters)
    top_optimizer = Adam(top_parameters, lr=config["top_lr"])
    ####################################################################
    # Training Pipeline
    ####################################################################

    # Trainer: responsible for managing the training process
    trainer = SumClfTrainer(model,
                            None,
                            None, (lm_criterion, clf_criterion),
                            [embed_optimizer, rnn_optimizer, top_optimizer],
                            config,
                            opts.device,
                            valid_loader_train_set=None,
                            unfreeze_embed=config["unfreeze_embed"],
                            unfreeze_rnn=config["unfreeze_rnn"],
                            test_loader=None)

    ####################################################################
    # Resume Training from a previous checkpoint
    ####################################################################
    if transfer:
        print("Transferring Encoder weights ...")
        dict_pattern_rename(checkpoint["model"], {
            "encoder": "bottom_rnn",
            "decoder": "vocab"
        })
        load_state_dict_subset(model, checkpoint["model"])
    print(model)

    _vocab = trainer.load_checkpoint(name=checkpoint_name, path=None)
    test_set = SUMDataset(X_test,
                          posts_test,
                          y_test,
                          seq_len=config['data']['seq_len'],
                          post_len=config['data']['post_len'],
                          preprocess=preprocessor,
                          vocab=_vocab)
    test_lengths = [len(x) for x in test_set.data]
    test_sampler = SortedSampler(test_lengths)

    # test_loader = DataLoader(test_set, sampler=test_sampler,
    #                          batch_size=config["batch_size"],
    #                          num_workers=opts.cores, collate_fn=SumCollate())

    test_loader = DataLoader(test_set,
                             sampler=test_sampler,
                             batch_size=config["batch_size"],
                             num_workers=0,
                             collate_fn=SumCollate())

    trainer.test_loader = test_loader

    _, labels_array, predicted = trainer.test_epoch()

    pids_dic = {}
    if human_summaries is None:
        for x, y, sent, z in zip(y_test, predicted, X_test, pids):
            if z in pids_dic:
                pids_dic[z].append([x, y, sent])
            else:
                pids_dic[z] = [[x, y, sent]]
    else:
        for x, y, sent, z, h_summary in zip(y_test, predicted, X_test, pids,
                                            human_summaries):
            if z in pids_dic:
                pids_dic[z].append([x, y, sent, h_summary])
            else:
                pids_dic[z] = [[x, y, sent, h_summary]]

    # import os
    # if not os.path.exists('{}/ref_abs'.format(output_dir)):
    #     os.mkdir('{}/ref_abs'.format(output_dir))
    # if not os.path.exists('{}/dec'.format(output_dir)):
    #     os.mkdir('{}/dec'.format(output_dir))

    file_index = 0
    all_summaries = []
    for elem_key in pids_dic:
        current_summary = ''
        for pair in pids_dic[elem_key]:
            if pair[1] == 1:
                current_summary += pair[2] + '\n'

        all_summaries.append(current_summary)

    return all_summaries
Exemple #2
0
def sent_clf(dataset, config, opts, transfer=False):
    from logger.experiment import Experiment

    opts.name = config["name"]
    X_train, y_train, _, X_val, y_val, _ = dataset
    vocab = None
    if transfer:
        opts.transfer = config["pretrained_lm"]
        checkpoint = load_checkpoint(opts.transfer)
        config["vocab"].update(checkpoint["config"]["vocab"])
        dict_pattern_rename(checkpoint["config"]["model"],
                            {"rnn_": "bottom_rnn_"})
        config["model"].update(checkpoint["config"]["model"])
        vocab = checkpoint["vocab"]

    ####################################################################
    # Load Preprocessed Datasets
    ####################################################################
    if config["preprocessor"] == "twitter":
        preprocessor = twitter_preprocessor()
    else:
        preprocessor = None

    print("Building training dataset...")
    train_set = ClfDataset(X_train,
                           y_train,
                           vocab=vocab,
                           preprocess=preprocessor,
                           vocab_size=config["vocab"]["size"],
                           seq_len=config["data"]["seq_len"])

    print("Building validation dataset...")
    val_set = ClfDataset(X_val,
                         y_val,
                         seq_len=train_set.seq_len,
                         preprocess=preprocessor,
                         vocab=train_set.vocab)

    src_lengths = [len(x) for x in train_set.data]
    val_lengths = [len(x) for x in val_set.data]

    # select sampler & dataloader
    train_sampler = BucketBatchSampler(src_lengths, config["batch_size"], True)
    val_sampler = SortedSampler(val_lengths)
    val_sampler_train = SortedSampler(src_lengths)

    train_loader = DataLoader(train_set,
                              batch_sampler=train_sampler,
                              num_workers=opts.cores,
                              collate_fn=ClfCollate())
    val_loader = DataLoader(val_set,
                            sampler=val_sampler,
                            batch_size=config["batch_size"],
                            num_workers=opts.cores,
                            collate_fn=ClfCollate())
    val_loader_train_dataset = DataLoader(train_set,
                                          sampler=val_sampler_train,
                                          batch_size=config["batch_size"],
                                          num_workers=opts.cores,
                                          collate_fn=ClfCollate())
    ####################################################################
    # Model
    ####################################################################
    ntokens = len(train_set.vocab)
    model = Classifier(ntokens, len(set(train_set.labels)), **config["model"])
    model.to(opts.device)

    clf_criterion = nn.CrossEntropyLoss()
    lm_criterion = nn.CrossEntropyLoss(ignore_index=0)

    embed_parameters = filter(lambda p: p.requires_grad,
                              model.embed.parameters())
    bottom_parameters = filter(
        lambda p: p.requires_grad,
        chain(model.bottom_rnn.parameters(), model.vocab.parameters()))
    if config["model"]["has_att"]:
        top_parameters = filter(
            lambda p: p.requires_grad,
            chain(model.top_rnn.parameters(), model.attention.parameters(),
                  model.classes.parameters()))
    else:
        top_parameters = filter(
            lambda p: p.requires_grad,
            chain(model.top_rnn.parameters(), model.classes.parameters()))

    embed_optimizer = optim.ASGD(embed_parameters, lr=0.0001)
    rnn_optimizer = optim.ASGD(bottom_parameters)
    top_optimizer = Adam(top_parameters, lr=config["top_lr"])
    ####################################################################
    # Training Pipeline
    ####################################################################

    # Trainer: responsible for managing the training process
    trainer = SentClfTrainer(model,
                             train_loader,
                             val_loader, (lm_criterion, clf_criterion),
                             [embed_optimizer, rnn_optimizer, top_optimizer],
                             config,
                             opts.device,
                             valid_loader_train_set=val_loader_train_dataset,
                             unfreeze_embed=config["unfreeze_embed"],
                             unfreeze_rnn=config["unfreeze_rnn"])

    ####################################################################
    # Experiment: logging and visualizing the training process
    ####################################################################

    # exp = Experiment(opts.name, config, src_dirs=opts.source,
    #                  output_dir=EXP_DIR)
    # exp.add_metric("ep_loss_lm", "line", "epoch loss lm",
    #                ["TRAIN", "VAL"])
    # exp.add_metric("ep_loss_cls", "line", "epoch loss class",
    #                ["TRAIN", "VAL"])
    # exp.add_metric("ep_f1", "line", "epoch f1", ["TRAIN", "VAL"])
    # exp.add_metric("ep_acc", "line", "epoch accuracy", ["TRAIN", "VAL"])
    #
    # exp.add_value("epoch", title="epoch summary")
    # exp.add_value("progress", title="training progress")

    ep_loss_lm = [10000, 10000]
    ep_loss_cls = [10000, 10000]
    ep_f1 = [0, 0]
    ep_acc = [0, 0]
    e_log = 0
    progress = 0
    ####################################################################
    # Resume Training from a previous checkpoint
    ####################################################################
    if transfer:
        print("Transferring Encoder weights ...")
        dict_pattern_rename(checkpoint["model"], {
            "encoder": "bottom_rnn",
            "decoder": "vocab"
        })
        load_state_dict_subset(model, checkpoint["model"])
    print(model)

    ####################################################################
    # Training Loop
    ####################################################################
    best_loss = None
    early_stopping = EarlyStopping("min", config["patience"])

    for epoch in range(0, config["epochs"]):

        train_loss = trainer.train_epoch()
        val_loss, y, y_pred = trainer.eval_epoch(val_set=True)
        _, y_train, y_pred_train = trainer.eval_epoch(train_set=True)
        # exp.update_metric("ep_loss_lm", train_loss[0], "TRAIN")
        ep_loss_lm[0] = train_loss[0]
        # exp.update_metric("ep_loss_lm", val_loss[0], "VAL")
        ep_loss_lm[1] = val_loss[0]
        # exp.update_metric("ep_loss_cls", train_loss[1], "TRAIN")
        # exp.update_metric("ep_loss_cls", val_loss[1], "VAL")
        ep_loss_cls[0] = train_loss[1]
        ep_loss_cls[1] = val_loss[1]

        # exp.update_metric("ep_f1", f1_macro(y_train, y_pred_train),
        #                   "TRAIN")
        ep_f1[0] = f1_macro(y_train, y_pred_train)
        # exp.update_metric("ep_f1", f1_macro(y, y_pred), "VAL")
        ep_f1[1] = f1_macro(y, y_pred)

        # exp.update_metric("ep_acc", acc(y_train, y_pred_train), "TRAIN")
        # exp.update_metric("ep_acc", acc(y, y_pred), "VAL")

        ep_acc[0] = acc(y_train, y_pred_train)
        ep_acc[1] = acc(y, y_pred)

        # print('Train lm Loss : {}\nVal lm Loss : {}\nTrain cls Loss : {}\nVal cls Loss : {}\n Train f1 : {}\nVal f1 : {}\nTrain acc : {}\n Val acc : {}'.format(
        #     ep_loss_lm[0], ep_loss_lm[1], ep_loss_cls[0], ep_loss_cls[1], ep_f1[0], ep_f1[1], ep_acc[0], ep_acc[1]
        # ))
        # epoch_log = exp.log_metrics(["ep_loss_lm", "ep_loss_cls","ep_f1", "ep_acc"])
        epoch_log = 'Train lm Loss : {}\nVal lm Loss : {}\nTrain cls Loss : {}\nVal cls Loss : {}\n Train f1 : {}\nVal f1 : {}\nTrain acc : {}\n Val acc : {}'.format(
            ep_loss_lm[0], ep_loss_lm[1], ep_loss_cls[0], ep_loss_cls[1],
            ep_f1[0], ep_f1[1], ep_acc[0], ep_acc[1])
        print(epoch_log)
        # exp.update_value("epoch", epoch_log)
        e_log = epoch_log
        # print('')
        # Save the model if the val loss is the best we've seen so far.
        # if not best_loss or val_loss[1] < best_loss:
        #     best_loss = val_loss[1]
        #     trainer.best_acc = acc(y, y_pred)
        #     trainer.best_f1 = f1_macro(y, y_pred)
        #     trainer.checkpoint(name=opts.name, timestamp=True)
        best_loss = val_loss[1]
        trainer.best_acc = acc(y, y_pred)
        trainer.best_f1 = f1_macro(y, y_pred)
        trainer.checkpoint(name=opts.name, tags=str(epoch))

        # if early_stopping.stop(val_loss[1]):
        #     print("Early Stopping (according to classification loss)....")
        #     break

        print("\n" * 2)

    return best_loss, trainer.best_acc, trainer.best_f1
X_train, X_test, y_train, y_test = load_wassa()

# 3 - convert labels from strings to integers
label_encoder = LabelEncoder()
label_encoder = label_encoder.fit(y_train)
with open("../submissions/label_encoder.pkl", "wb") as r:
    pickle.dump(label_encoder, r)
y_train = label_encoder.transform(y_train)
y_test = label_encoder.transform(y_test)
name = "wassa"
#####################################################################
# Define Dataloaders
#####################################################################

preprocessor = twitter_preprocessor()
# preprocessor = None
if preprocessor is None:
    train_name = "train_simple_split_{}".format(name)
    val_name = "valid_simple_split_{}".format(name)
else:
    train_name = "train_ekphrasis_{}".format(name)
    val_name = "valid_ekphrasis_{}".format(name)

train_set = WordDataset(X_train,
                        y_train,
                        word2idx,
                        name=train_name,
                        max_length=35,
                        preprocess=preprocessor)
test_set = WordDataset(X_test,
def submission(dataset, models=[], lm=[], gold=[]):

    X = load_test_wassa(dataset)

    with open("label_encoder.pkl", "rb") as f:
        label_encoder = pickle.load(f)

    # load embeddings
    file = os.path.join(BASE_PATH, "embeddings", "ntua_twitter_300.txt")
    word2idx, idx2word, weights = load_word_vectors(file, 300)

    dummy_y = [[0] * 6] * len(X)
    dummy_y = torch.tensor(dummy_y)

    posteriors_list = []
    predicted_list = []

    for i in range(0, len(models)):

        checkpoint_name = models[i]

        if lm[i]:
            model, optimizer, word2idx, idx2word, loss, acc, f1 = \
                load_checkpoint_pre_lm(checkpoint_name)
        else:
            model, optimizer, vocab, loss, acc, f1 = \
                load_checkpoint_with_f1(checkpoint_name)

        #####################################################################
        # Define Dataloaders
        #####################################################################
        preprocessor = twitter_preprocessor()

        # for new experiments remember to empty _cache!
        test_set = WordDataset(X,
                               dummy_y,
                               word2idx,
                               name="wassa_test_submit",
                               preprocess=preprocessor)
        sampler = SequentialSampler(test_set)

        test_loader = DataLoader(test_set, batch_size=32, sampler=sampler)

        #####################################################################
        # Load Trained Model
        #####################################################################
        model.eval()
        model.to(config.DEVICE)
        print(model)

        #####################################################################
        # Evaluate Trained Model on test set & Calculate predictions
        #####################################################################
        labels, predicted, posteriors = test_clf(model=model,
                                                 data_source=test_loader,
                                                 device=config.DEVICE)
        # pprint(labels)
        pprint(predicted)

        predicted_list.append(predicted)
        posteriors_list.append(posteriors)

    # pred, accuracy, f1  = ensemble_voting(predicted_list, gold, dataset)
    pred, accuracy, f1 = ensemble_posteriors(posteriors_list, gold, dataset)

    #####################################################################
    # Create submission file with the predictions3M_GU13__35_noconc_2att
    #####################################################################
    write_predictions(pred, label_encoder)
    return
Exemple #5
0
def sent_clf_no_aux(dataset, config, opts, transfer=False):
    from logger.experiment import Experiment

    opts.name = config["name"]
    X_train, y_train, X_val, y_val = dataset
    vocab = None
    if transfer:
        opts.transfer = config["pretrained_lm"]
        checkpoint = load_checkpoint(opts.transfer)
        config["vocab"].update(checkpoint["config"]["vocab"])
        dict_pattern_rename(checkpoint["config"]["model"],
                            {"rnn_": "bottom_rnn_"})
        config["model"].update(checkpoint["config"]["model"])
        vocab = checkpoint["vocab"]

    ####################################################################
    # Data Loading and Preprocessing
    ####################################################################
    if config["preprocessor"] == "twitter":
        preprocessor = twitter_preprocessor()
    else:
        preprocessor = None

    print("Building training dataset...")
    train_set = ClfDataset(X_train,
                           y_train,
                           vocab=vocab,
                           preprocess=preprocessor,
                           vocab_size=config["vocab"]["size"],
                           seq_len=config["data"]["seq_len"])

    print("Building validation dataset...")
    val_set = ClfDataset(X_val,
                         y_val,
                         seq_len=train_set.seq_len,
                         preprocess=preprocessor,
                         vocab=train_set.vocab)

    src_lengths = [len(x) for x in train_set.data]
    val_lengths = [len(x) for x in val_set.data]

    # select sampler & dataloader
    train_sampler = BucketBatchSampler(src_lengths, config["batch_size"], True)
    val_sampler = SortedSampler(val_lengths)
    val_sampler_train = SortedSampler(src_lengths)

    train_loader = DataLoader(train_set,
                              batch_sampler=train_sampler,
                              num_workers=opts.cores,
                              collate_fn=ClfCollate())
    val_loader = DataLoader(val_set,
                            sampler=val_sampler,
                            batch_size=config["batch_size"],
                            num_workers=opts.cores,
                            collate_fn=ClfCollate())
    val_loader_train_dataset = DataLoader(train_set,
                                          sampler=val_sampler_train,
                                          batch_size=config["batch_size"],
                                          num_workers=opts.cores,
                                          collate_fn=ClfCollate())
    ####################################################################
    # Model
    ####################################################################
    ntokens = len(train_set.vocab)
    model = NaiveClassifier(ntokens,
                            len(set(train_set.labels)),
                            attention=config["model"]["has_att"],
                            **config["model"])
    model.to(opts.device)

    criterion = nn.CrossEntropyLoss()

    if config["gu"]:

        embed_parameters = filter(lambda p: p.requires_grad,
                                  model.embed.parameters())
        bottom_parameters = filter(lambda p: p.requires_grad,
                                   chain(model.bottom_rnn.parameters()))
        if config["model"]["has_att"]:
            top_parameters = filter(
                lambda p: p.requires_grad,
                chain(model.attention.parameters(),
                      model.classes.parameters()))
        else:
            top_parameters = filter(lambda p: p.requires_grad,
                                    model.classes.parameters())

        embed_optimizer = Adam(embed_parameters)
        rnn_optimizer = Adam(bottom_parameters)
        top_optimizer = Adam(top_parameters)

        # Trainer: responsible for managing the training process
        trainer = SentClfNoAuxTrainer(
            model,
            train_loader,
            val_loader,
            criterion, [embed_optimizer, rnn_optimizer, top_optimizer],
            config,
            opts.device,
            valid_loader_train_set=val_loader_train_dataset,
            unfreeze_embed=config["unfreeze_embed"],
            unfreeze_rnn=config["unfreeze_rnn"])
    else:
        parameters = filter(lambda p: p.requires_grad, model.parameters())

        optimizer = optim.Adam(parameters, lr=config["top_lr"])
        # Trainer: responsible for managing the training process
        trainer = SentClfNoAuxTrainer(
            model,
            train_loader,
            val_loader,
            criterion, [optimizer],
            config,
            opts.device,
            valid_loader_train_set=val_loader_train_dataset)

    ####################################################################
    # Experiment: logging and visualizing the training process
    ####################################################################
    exp = Experiment(opts.name,
                     config,
                     src_dirs=opts.source,
                     output_dir=EXP_DIR)
    exp.add_metric("ep_loss", "line", "epoch loss class", ["TRAIN", "VAL"])
    exp.add_metric("ep_f1", "line", "epoch f1", ["TRAIN", "VAL"])
    exp.add_metric("ep_acc", "line", "epoch accuracy", ["TRAIN", "VAL"])

    exp.add_value("epoch", title="epoch summary")
    exp.add_value("progress", title="training progress")

    ####################################################################
    # Resume Training from a previous checkpoint
    ####################################################################
    if transfer:
        print("Transferring Encoder weights ...")
        dict_pattern_rename(checkpoint["model"], {"encoder": "bottom_rnn"})
        load_state_dict_subset(model, checkpoint["model"])

    print(model)

    ####################################################################
    # Training Loop
    ####################################################################
    best_loss = None
    early_stopping = EarlyStopping("min", config["patience"])

    for epoch in range(1, config["epochs"] + 1):
        train_loss = trainer.train_epoch()
        val_loss, y, y_pred = trainer.eval_epoch(val_set=True)
        _, y_train, y_pred_train = trainer.eval_epoch(train_set=True)
        # Calculate accuracy and f1-macro on the evaluation set
        exp.update_metric("ep_loss", train_loss.item(), "TRAIN")
        exp.update_metric("ep_loss", val_loss.item(), "VAL")
        exp.update_metric("ep_f1", f1_macro(y_train, y_pred_train), "TRAIN")
        exp.update_metric("ep_f1", f1_macro(y, y_pred), "VAL")
        exp.update_metric("ep_acc", acc(y_train, y_pred_train), "TRAIN")
        exp.update_metric("ep_acc", acc(y, y_pred), "VAL")

        print()
        epoch_log = exp.log_metrics(["ep_loss", "ep_f1", "ep_acc"])
        print(epoch_log)
        exp.update_value("epoch", epoch_log)

        ###############################################################
        # Unfreezing the model after X epochs
        ###############################################################
        # Save the model if the val loss is the best we've seen so far.
        if not best_loss or val_loss < best_loss:
            best_loss = val_loss
            trainer.best_acc = acc(y, y_pred)
            trainer.best_f1 = f1_macro(y, y_pred)
            trainer.checkpoint(name=opts.name)

        if early_stopping.stop(val_loss):
            print("Early Stopping (according to cls loss)....")
            break

        print("\n" * 2)

    return best_loss, trainer.best_acc, trainer.best_f1