def generate_cycle(length,*args,peep=None): startpos = np.random.randint(0,len(args[0])) delta = (length - startpos) nzeroes = delta//len(args[0])+1 zpos = np.random.randint(2,delta//10,size=nzeroes) res = [None]*len(args) vrandom = [np.random.uniform(0.95,1.05) if np.random.random() > 0.01 else np.random.uniform(0.1,0.2) for i in range(nzeroes+1)] for i in range(len(args)): rarr = args[i][-startpos:] # mode = stats.mode(args[i])[0] mode = peep if (not peep is None) and (i==len(args)-1) else 0 for j in range(nzeroes): aux = vrandom[j+1]*args[i] + (1-vrandom[j+1])*mode # aux = 0.0 # if vrandom[j+1] < 0.9: aux = np.array([ vrandom[j+1]*value if value > mode/vrandom[j+1] else value for value in args[i]]) # else: aux = np.array([vrandom[j+1]*value if value > mode/vrandom[j+1] else value for value in args[i]]) rarr = np.concatenate((rarr,np.ones(zpos[j])*mode,aux)) res[i] = rarr[:length] return res
def pmus_ingmar(fs, rr, pp, tp, tf): """ Sinusoidal profile :param fs: sample frequency :param rr: respiratory rate :param pp: peak pressure :param tp: peak time :param tf: end of effort :return: pmus profile """ ntp = np.floor(tp * fs) ntf = np.floor(tf * fs) ntN = np.floor(60.0 * fs / rr) pmus1 = np.sin(np.pi * np.arange(0, ntp + 1, 1) / fs / 2.0 / tp) pmus2 = np.sin(np.pi / 2.0 / (tf - tp) * (np.arange(ntp + 1, ntf + 1, 1) / fs + tf - 2.0 * tp)) pmus3 = 0 * np.arange(ntf + 1, ntN + 1, 1) / fs pmus = pp * np.concatenate((pmus1, pmus2, pmus3)) return pmus
def pmus_parexp(fs, rr, pp, tp, tf): """ Parabolic-exponential profile :param fs: sample frequency :param rr: respiratory rate :param pp: peak pressure :param tp: peak time :param tf: end of effort :return: pmus profile """ ntp = np.floor(tp * fs) ntN = np.floor(60.0 / rr * fs) taur = abs(tf - tp) / 4.0 pmus1 = pp * (60.0 * rr - np.arange(0, ntp + 1, 1) / fs) * ( np.arange(0, ntp + 1, 1) / fs) / (tp * (60.0 * rr - tp)) pmus2 = pp * (np.exp(-(np.arange(ntp + 1, ntN + 1, 1) / fs - tp) / taur) - np.exp(-(60.0 * rr - tp) / taur)) / ( 1.0 - np.exp(-(60.0 * rr - tp) / taur)) pmus = np.concatenate((pmus1, pmus2)) return pmus
RGB_image, extract_patches, patch_tiles, bal_aug_patches, extrac_patch2, test_FCN, pred_recostruction, \ weighted_categorical_crossentropy, mask_no_considered, tf, Adam, prediction, load_model, confusion_matrix, \ EarlyStopping, ModelCheckpoint, identity_block, ResNet50, color_map root_path = './DATASETS/' # Load images img_t1 = load_tiff_image(root_path + 'images/18_08_2017_image' + '.tif').astype(np.float32) img_t1 = img_t1.transpose((1, 2, 0)) img_t2 = load_tiff_image(root_path + 'images/21_08_2018_image' + '.tif').astype(np.float32) img_t2 = img_t2.transpose((1, 2, 0)) # Concatenation of images image_array1 = np.concatenate((img_t1, img_t2), axis=-1).astype(np.float32) h_, w_, channels = image_array1.shape print(image_array1.shape) # Normalization type_norm = 1 image_array = normalization(image_array1, type_norm) print(np.min(image_array), np.max(image_array)) # Load reference image_ref1 = load_tiff_image(root_path + 'images/REFERENCE_2018_EPSG4674' + '.tif') image_ref = image_ref1[:1700, :1440] past_ref1 = load_tiff_image(root_path + 'images/PAST_REFERENCE_FOR_2018_EPSG4674' + '.tif')
def solve_model(header_params,params,header_features,features,debugmsg): #Extracts each parameter fs = params[header_params.index('Fs')] rvent = params[header_params.index('Rvent')] c = params[header_params.index('C')] rins = params[header_params.index('Rins')] rexp = rins # params[4] peep = params[header_params.index('PEEP')] sp = params[header_params.index('SP')] trigger_type = features[header_features.index('Triggertype')] trigger_arg = params[header_params.index('Triggerarg')] rise_type = features[header_features.index('Risetype')] rise_time = params[header_params.index('Risetime')] cycle_off = params[header_params.index('Cycleoff')] rr = params[header_params.index('RR')] pmus_type = features[header_features.index('Pmustype')] pp = params[header_params.index('Pp')] tp = params[header_params.index('Tp')] tf = params[header_params.index('Tf')] noise = params[header_params.index('Noise')] e2 = params[header_params.index('E2')] model = features[header_features.index('Model')] expected_len = int(np.floor(180.0 / np.min(RR) * np.max(Fs)) + 1) #Assings pmus profile pmus = pmus_profile(fs, rr, pmus_type, pp, tp, tf) pmus = pmus + peep #adjusts PEEP pmus = np.concatenate((np.array([0]), pmus)) #sets the first value to zero #Unit conversion from cmH2O.s/L to cmH2O.s/mL rins = rins / 1000.0 rexp = rexp / 1000.0 rvent = rvent / 1000.0 #Generates time, flow, volume, insex and paw waveforms time = np.arange(0, np.floor(60.0 / rr * fs) + 1, 1) / fs time = np.concatenate((np.array([0]), time)) flow = np.zeros(len(time)) volume = np.zeros(len(time)) insex = np.zeros(len(time)) paw = np.zeros(len(time)) + peep #adjusts PEEP len_time = len(time) #Peak flow detection peak_flow = flow[0] detect_peak_flow = False #Support detection detect_support = False time_support = -1 #Expiration detection detect_exp = False time_exp = -1 if trigger_type == 'flow': # units conversion from L/min to mL/s trigger_arg = trigger_arg / 60.0 * 1000.0 for i in range(1, len(time)): # period until the respiratory effort beginning if (((trigger_type == 'flow' and flow[i] < trigger_arg) or (trigger_type == 'pressure' and paw[i] > trigger_arg + peep) or (trigger_type == 'delay' and time[i] < trigger_arg)) and (not detect_support) and (not detect_exp)): paw[i] = peep y0 = volume[i - 1] tspan = [time[i - 1], time[i]] args = (paw[i], pmus[i], model, c, e2, rins) sol = odeint(flow_model, y0, tspan, args=args) volume[i] = sol[-1] flow[i] = flow_model(volume[i], time[i], paw[i], pmus[i], model, c, e2, rins) if debugmsg: print('volume[i]= {:.2f}, flow[i]= {:.2f}, paw[i]= {:.2f}, waiting'.format(volume[i], flow[i], paw[i])) if (((trigger_type == 'flow' and flow[i] >= trigger_arg) or (trigger_type == 'pressure' and paw[i] <= trigger_arg + peep) or (trigger_type == 'delay' and time[i] >= trigger_arg))): detect_support = True time_support = time[i+1] continue # detection of inspiratory effort # ventilator starts to support the patient elif (detect_support and (not detect_exp)): if rise_type == 'step': paw[i] = sp + peep elif rise_type == 'exp': rise_type = rise_type if np.random.random() > 0.01 else 'linear' if paw[i] < sp + peep: paw[i] = (1.0 - np.exp(-(time[i] - time_support) / rise_time )) * sp + peep if paw[i] >= sp + peep: paw[i] = sp + peep elif rise_type == 'linear': rise_type = rise_type if np.random.random() > 0.01 else 'exp' if paw[i] < sp + peep: paw[i] = (time[i] - time_support) / rise_time * sp + peep if paw[i] >= sp + peep: paw[i] = sp + peep y0 = volume[i - 1] tspan = [time[i - 1], time[i]] args = (paw[i], pmus[i], model, c, e2, rins) sol = odeint(flow_model, y0, tspan, args=args) volume[i] = sol[-1] flow[i] = flow_model(volume[i], time[i], paw[i], pmus[i], model, c, e2, rins) if debugmsg: print('volume[i]= {:.2f}, flow[i]= {:.2f}, paw[i]= {:.2f}, supporting'.format(volume[i], flow[i], paw[i])) if flow[i] >= flow[i - 1]: peak_flow = flow[i] detect_peak_flow = False elif flow[i] < flow[i - 1]: detect_peak_flow = True if (flow[i] <= cycle_off * peak_flow) and detect_peak_flow and i<len_time: detect_exp = True time_exp = i+1 try: paw[i + 1] = paw[i] except IndexError: pass elif detect_exp: if rise_type == 'step': paw[i] = peep elif rise_type == 'exp': if paw[i - 1] > peep: paw[i] = sp * (np.exp(-(time[i] - time[time_exp-1]) / rise_time )) + peep if paw[i - 1] <= peep: paw[i] = peep elif rise_type == 'linear': rise_type = rise_type if np.random.random() > 0.01 else 'exp' if paw[i - 1] > peep: paw[i] = sp * (1 - (time[i] - time[time_exp-1]) / rise_time) + peep if paw[i - 1] <= peep: paw[i] = peep y0 = volume[i - 1] tspan = [time[i - 1], time[i]] args = (paw[i], pmus[i], model, c, e2, rexp + rvent) sol = odeint(flow_model, y0, tspan, args=args) volume[i] = sol[-1] flow[i] = flow_model(volume[i], time[i], paw[i], pmus[i], model, c, e2, rexp + rvent) if debugmsg: print('volume[i]= {:.2f}, flow[i]= {:.2f}, paw[i]= {:.2f}, exhaling'.format(volume[i], flow[i], paw[i])) #Generates InsEx trace if time_exp > -1: insex = np.concatenate((np.ones(time_exp), np.zeros(len(time) - time_exp))) #Drops the first element flow = flow[1:] / 1000.0 * 60.0 # converts back to L/min volume = volume[1:] paw = paw[1:] pmus = pmus[1:] - peep #reajust peep again insex = insex[1:] flow,volume,pmus,insex,paw = generate_cycle(expected_len,flow,volume,pmus,insex,paw,peep=peep) # paw = generate_cycle(expected_len,paw,peep=peep)[0] flow,volume,paw,pmus,insex = generate_noise(noise,flow,volume,paw,pmus,insex) # plt.plot(flow) # plt.plot(volume) # plt.plot(paw) # plt.plot(pmus) # plt.show() return flow, volume, paw, pmus, insex, rins,rexp, c
parser.add_argument("--dataset", help="dataset path", type=str, default='dataset') args = parser.parse_args() root_path = args.dataset img_t1_path = 'clipped_raster_004_66_2018.tif' img_t2_path = 'clipped_raster_004_66_2019.tif' # Load images img_t1 = load_tiff_image(os.path.join(root_path,img_t1_path)).astype(np.float32) img_t1 = img_t1.transpose((1,2,0)) img_t2 = load_tiff_image(os.path.join(root_path,img_t2_path)).astype(np.float32) img_t2 = img_t2.transpose((1,2,0)) # Concatenation of images image_array1 = np.concatenate((img_t1, img_t2), axis = -1).astype(np.float32) image_array1 = image_array1[:6100,:6600] h_, w_, channels = image_array1.shape print(f"Input image shape: {image_array1.shape}") # Normalization type_norm = 1 image_array = normalization(image_array1, type_norm) print(np.min(image_array), np.max(image_array)) # Load Mask area img_mask_ref_path = 'mask_ref.tif' img_mask_ref = load_tiff_image(os.path.join(root_path, img_mask_ref_path)) img_mask_ref = img_mask_ref[:6100,:6600] print(f"Mask area reference shape: {img_mask_ref.shape}")
num_examples = flow.shape[0] num_samples = flow.shape[1] (min_flow, max_flow, flow) = normalize_data(flow) (min_volume, max_volume, volume) = normalize_data(volume) (min_paw, max_paw, paw) = normalize_data(paw) (min_resistance, max_resistance, resistances) = normalize_data(resistances) (min_capacitance, max_capacitance, capacitances) = normalize_data(capacitances) print("normalized data") input_data = np.zeros((num_examples, num_samples, 3)) input_data[:, :, 0] = flow input_data[:, :, 1] = volume input_data[:, :, 2] = paw output_data = np.concatenate((resistances, capacitances), axis=1) indices = np.arange(num_examples) print("input created") input_train, input_test, output_train, output_test, indices_train, indices_test = \ train_test_split(input_data, output_data, indices, test_size=0.3, shuffle=False) input_validation, input_test, output_validation, output_test, indices_validation, indices_test = \ train_test_split(input_test, output_test, indices_test, test_size=0.5, shuffle=False) np.save('./data/input_test.npy', input_test) np.save('./data/output_test.npy', output_test) print("before CNN")