Exemple #1
0
def low_pass_filter_3d(array, cutoff, omega=0):
    (a, b, c) = np.shape(array)
    filt = np.empty((b, c))
    filtered_spatial = np.empty((a, b, c))
    # grs = empty((a, b, c, 4))
    # grsq = empty((a,b,c,2))
    for k in range(len(array)):
        fft2 = fftpack.fft2(array[k, :, :])
        filt[abs(fft2) < cutoff - omega] = 1
        filt[abs(fft2) > cutoff + omega] = 0
        mask = (cutoff - omega < abs(fft2)) & (abs(fft2) < cutoff + omega)
        filt[mask] = 0.5 * (1 - np.sin(np.pi * (abs(fft2[mask]) - cutoff) /
                                       (2 * omega)))
        fft2 = fft2 * filt
        filtered_spatial[k] = fftpack.ifft2(fft2)
    return filtered_spatial
def read_channels(channels,
                  latitudes,
                  longitudes,
                  dfb_beginning,
                  dfb_ending,
                  slot_step=1):
    dir, pattern = read_channels_dir_and_pattern()
    satellite = read_satellite_name()
    satellite_step = read_satellite_step()
    nb_slots = get_nb_slots_per_day(satellite_step, slot_step)
    patterns = [
        pattern.replace("{SATELLITE}", satellite).replace('{CHANNEL}', chan)
        for chan in channels
    ]
    nb_days = dfb_ending - dfb_beginning + 1
    content = np.empty(
        (nb_slots * nb_days, len(latitudes), len(longitudes), len(patterns)))
    start = read_start_slot()
    for k in range(len(patterns)):
        pattern = patterns[k]
        chan = channels[k]
        dataset = DataSet.read(
            dirs=dir,
            extent={
                'latitude': latitudes,
                'longitude': longitudes,
                'dfb': {
                    'start': dfb_beginning,
                    'end': dfb_ending,
                    "end_inclusive": True,
                    'start_inclusive': True,
                },
                'slot': np.arange(start, start + nb_slots, step=slot_step)
            },
            file_pattern=pattern,
            variable_name=chan,
            fill_value=np.nan,
            interpolation='N',
            max_processes=0,
        )

        data = dataset['data'].data
        day_slot_b = 0
        day_slot_e = nb_slots
        for day in range(nb_days):
            content[day_slot_b:day_slot_e, :, :, k] = data[day]
            day_slot_b += nb_slots
            day_slot_e += nb_slots
    return content
Exemple #3
0
def time_smoothing(array_3D_to_smoothen, nb_neighbours_smoothing=5):
    smoothing = nb_neighbours_smoothing > 0
    if smoothing:
        time_start_smoothing = time.time()
        shape = np.shape(array_3D_to_smoothen)
        array = np.empty(shape)
        for k in range(nb_neighbours_smoothing,
                       shape[0] - nb_neighbours_smoothing):
            array[k] = np.mean(
                array_3D_to_smoothen[k - nb_neighbours_smoothing:k +
                                     nb_neighbours_smoothing + 1])
        time_stop_smoothing = time.time()
        print 'time smoothing', str(time_stop_smoothing - time_start_smoothing)
        return array / (1 + 2 * nb_neighbours_smoothing)
    else:
        return array_3D_to_smoothen
Exemple #4
0
def prepare_angles_features_bom_labels(seed, selected_slots):
    beginning, ending, latitude_beginning, latitude_end, longitude_beginning, longitude_end = typical_input(
        seed)
    times = get_times_utc(beginning,
                          ending,
                          read_satellite_step(),
                          slot_step=1)
    latitudes, longitudes = get_latitudes_longitudes(latitude_beginning,
                                                     latitude_end,
                                                     longitude_beginning,
                                                     longitude_end)
    a, b, c = len(times), len(latitudes), len(longitudes)
    nb_features_ = 8
    features = np.empty((a, b, c, nb_features_))
    angles, vis, ndsi, mask = get_features('visible',
                                           latitudes,
                                           longitudes,
                                           beginning,
                                           ending,
                                           output_level='ndsi',
                                           slot_step=1,
                                           gray_scale=False)
    test_angles = dawn_day_test(angles)
    land_mask = typical_land_mask(seed)
    mask = ((test_angles | land_mask) | mask)
    ndsi[mask] = -10
    features[:, :, :, 5] = test_angles
    features[:, :, :, 6] = land_mask
    del test_angles, land_mask, mask
    features[:, :, :, 3] = vis
    features[:, :, :, 4] = ndsi
    del vis, ndsi
    features[:, :, :, :3] = get_features('infrared',
                                         latitudes,
                                         longitudes,
                                         beginning,
                                         ending,
                                         output_level='abstract',
                                         slot_step=1,
                                         gray_scale=False)[:, :, :, :3]
    features[:, :, :, 7] = (typical_static_classifier(seed) >= 2)
    if selected_slots is not None:
        return angles[selected_slots], features[selected_slots], selected_slots
    return angles, features, selected_slots
def read_classes(latitudes,
                 longitudes,
                 dfb_beginning,
                 dfb_ending,
                 slot_step=1):
    dir, pattern = read_indexes_dir_and_pattern('classes')
    satellite_step = read_satellite_step()
    nb_slots = get_nb_slots_per_day(satellite_step, slot_step)
    nb_days = dfb_ending - dfb_beginning + 1
    content = np.empty((nb_slots * nb_days, len(latitudes), len(longitudes)))

    dataset = DataSet.read(
        dirs=dir,
        extent={
            'latitude': latitudes,
            'longitude': longitudes,
            'dfb': {
                'start': dfb_beginning,
                'end': dfb_ending,
                "end_inclusive": True,
                'start_inclusive': True,
            },
            'slot': {
                "enumeration": np.arange(0, nb_slots, step=slot_step),
                "override_type": "slot"
            },
        },
        file_pattern=pattern,
        variable_name='Classes',
        fill_value=np.nan,
        interpolation='N',
        max_processes=0,
    )

    data = dataset['data'].data
    day_slot_b = 0
    day_slot_e = nb_slots
    for day in range(nb_days):
        content[day_slot_b:day_slot_e, :, :] = data[day]
        day_slot_b += nb_slots
        day_slot_e += nb_slots
    return content
def read_temperature_forecast(latitudes, longitudes, dfb_beginning,
                              dfb_ending):
    dir, pattern = read_mask_dir_and_pattern('temperature_forecast')
    nb_days = dfb_ending - dfb_beginning + 1

    content = np.empty((24 * nb_days, len(latitudes), len(longitudes)))

    dataset = DataSet.read(
        dirs=dir,
        extent={
            'latitude': latitudes % 180,
            'longitude': longitudes % 360,
            'day': {
                'start': dfb_beginning,
                'end': dfb_ending,
                "end_inclusive": True,
                'start_inclusive': True,
            },
            'time': {
                "enumeration": np.linspace(0., 24., num=24, endpoint=False),
                "override_type": "hours"
            },
        },
        file_pattern=pattern,
        variable_name='temp_2m',
        fill_value=np.nan,
        interpolation='N',
        max_processes=0,
    )

    data = dataset['data'].data
    day_slot_b = 0
    day_slot_e = 24
    for day in range(nb_days):
        content[day_slot_b:day_slot_e, :, :] = data[day]
        day_slot_b += 24
        day_slot_e += 24
    return content
Exemple #7
0
def train_solar_model(zen, classes, features, method_learning, meta_method,
                      pca_components, training_rate):
    t_beg = time()
    nb_days_training = len(zen) / get_nb_slots_per_day(read_satellite_step(),
                                                       1)
    select = mask_temporally_stratified_samples(
        zen, training_rate, coef_randomization * nb_days_training)
    features = reshape_features(features)
    select = select.flatten()
    nb_features = features.shape[-1]
    if pca_components is not None:
        nb_features = pca_components
        features = immediate_pca(features, pca_components)
    var = features[:, 0][select]
    training = np.empty((len(var), nb_features))
    training[:, 0] = var
    for k in range(1, nb_features):
        training[:, k] = features[:, k][select]
    del var
    if method_learning == 'knn':
        estimator = create_knn()
    elif method_learning == 'bayes':
        estimator = create_naive_bayes()
    elif method_learning == 'mlp':
        estimator = create_neural_network()
    elif method_learning == 'forest':
        estimator = create_random_forest()
    else:
        estimator = create_decision_tree()
    if meta_method == 'bagging':
        estimator = create_bagging_estimator(estimator)
    model = fit_model(estimator, training, classes.flatten()[select])
    del training
    t_train = time()
    print 'time training:', t_train - t_beg
    save(path_, model)
    t_save = time()
    print 'time save:', t_save - t_train
Exemple #8
0
def prepare_angles_features_ped_labels(seed, keep_holes=True):
    '''

    :param latitude_beginning:
    :param latitude_end:
    :param longitude_beginning:
    :param longitude_end:
    :param beginning:
    :param ending:
    :param output_level:
    :param seed:
    :param keep_holes:
    :return:
    '''
    beginning, ending, latitude_beginning, latitude_end, longitude_beginning, longitude_end = typical_input(
        seed)

    latitudes, longitudes = get_latitudes_longitudes(latitude_beginning,
                                                     latitude_end,
                                                     longitude_beginning,
                                                     longitude_end)
    if keep_holes:
        labels, selected_slots = read_labels_keep_holes(
            'csp', latitude_beginning, latitude_end, longitude_beginning,
            longitude_end, beginning, ending)
    else:
        labels, selected_slots = read_labels_remove_holes(
            'csp', latitude_beginning, latitude_end, longitude_beginning,
            longitude_end, beginning, ending)

    angles, vis, ndsi, mask = get_features('visible',
                                           latitudes,
                                           longitudes,
                                           beginning,
                                           ending,
                                           output_level='ndsi',
                                           slot_step=1,
                                           gray_scale=False)
    a, b, c = angles.shape
    nb_features_ = 8
    features = np.empty((a, b, c, nb_features_))

    test_angles = dawn_day_test(angles)
    land_mask = typical_land_mask(seed)
    ndsi[((test_angles | land_mask) | mask)] = -10
    features[:, :, :, 5] = test_angles
    features[:, :, :, 6] = land_mask
    features[:, :, :, 3] = vis
    features[:, :, :, 4] = ndsi
    del vis, ndsi

    cli_mu, cli_epsilon, mask_input_cli = get_features('infrared',
                                                       latitudes,
                                                       longitudes,
                                                       beginning,
                                                       ending,
                                                       output_level='cli',
                                                       slot_step=1,
                                                       gray_scale=False)
    mask = ((test_angles | land_mask) | mask)
    cli_mu[mask] = -10
    cli_epsilon[mask] = -10
    features[:, :, :, 0] = cli_mu
    features[:, :, :, 1] = cli_epsilon
    del mask, test_angles, land_mask, cli_mu, cli_epsilon

    features[:, :, :, 2] = get_features('infrared',
                                        latitudes,
                                        longitudes,
                                        beginning,
                                        ending,
                                        output_level='channel',
                                        slot_step=1,
                                        gray_scale=False)[:, :, :, 1]

    if selected_slots is not None:
        features[selected_slots, :, :, 7] = labels
        return angles[selected_slots], features[selected_slots], selected_slots
    else:
        features[:, :, :, 7] = labels
        return angles, features, selected_slots