def run_2(num_of_agents, noise, values): print('start calculating agents-{0} , noise-{1}, {2}'.format(num_of_agents, noise, datetime.utcnow())) identical_values = numbersUtils.values_to_allocations(numbersUtils.noisy_values_array(values, 0, None, num_of_agents)) noise_values = numbersUtils.values_to_allocations(numbersUtils.noisy_values_array(values, noise, None, num_of_agents)) index_to_location_type = envinfluence.index_to_location_type(values, envinfluence. LOCATION_TYPES()) env_influence_values = numbersUtils.values_to_allocations(numbersUtils.preferences_values_array(values, index_to_location_type, None, num_of_agents)) ldResults = calc_single_row(num_of_agents, noise, deepcopy(noise_values), deepcopy(identical_values), deepcopy(env_influence_values), LastDiminisher.last_diminisher_allocation) print('ldResults calculated {0}'.format(datetime.utcnow())) evenPazResults = calc_single_row(num_of_agents, noise, deepcopy(noise_values), deepcopy(identical_values), deepcopy(env_influence_values), evenpazalg.even_paz_dividion) print('evenPazResults calculated {0}'.format(datetime.utcnow())) return evenPazResults,ldResults
def run_ex_for_params(num_of_agents, noise, values): results_by_exp_type = {} for exp_type in expType.ExperimentType: results_by_exp_type[exp_type] =[] identical_values = numbersUtils.noisy_values_array(values, 0, None, num_of_agents) for exp in range(EXPERIMENTS_PER_CELL): noise_values = numbersUtils.noisy_values_array(values, noise, None, num_of_agents) allocations1 = numbersUtils.values_to_allocations(noise_values) identical_allocation_even_paz = numbersUtils.values_to_allocations(identical_values) #even paz.. results_even_paz = calc_results_with_exchnages(evenpazalg.even_paz_dividion, expType.ExperimentType.even_paz, expType.ExperimentType.even_paz_exchange_jealous, allocations1, num_of_agents, noise, None, identical_allocation_even_paz, expType.ExperimentType.even_paz_appraiser, results_by_exp_type) allocations2 = numbersUtils.values_to_allocations(noise_values) identical_allocation_last_diminisher = numbersUtils.values_to_allocations(identical_values) #last diminisher calc_results_with_exchnages(LastDiminisher.last_diminisher_allocation, expType.ExperimentType.last_diminisher, expType.ExperimentType.last_diminisher_exchange_jealous, allocations2, num_of_agents, noise, None, identical_allocation_last_diminisher, expType.ExperimentType.last_diminisher_appraiser, results_by_exp_type) #env influence index_to_location_type = envinfluence.index_to_location_type(values, envinfluence. LOCATION_TYPES()) env_influence_values = numbersUtils.preferences_values_array(values, index_to_location_type, None, num_of_agents) #even paz even_paz_env_allocations = numbersUtils.values_to_allocations(env_influence_values) calc_results_with_exchnages(evenpazalg.even_paz_dividion, expType.ExperimentType.even_paz_env_influence, expType.ExperimentType.even_paz_env_influence_exchange, even_paz_env_allocations, num_of_agents, 0, None, None, None, results_by_exp_type) #last diminisher last_diminisher_env_allocations = numbersUtils.values_to_allocations(env_influence_values) calc_results_with_exchnages(LastDiminisher.last_diminisher_allocation, expType.ExperimentType.last_diminisher_env_influence, expType.ExperimentType.last_diminisher_env_influence_exchange, last_diminisher_env_allocations, num_of_agents, 0, None, None, None, results_by_exp_type) #fraud agent for i in range(num_of_agents): identical_allocation_last_diminisher_i = numbersUtils.values_to_allocations(identical_values) allocations_even_paz_fraud = numbersUtils.values_to_allocations(noise_values) calc_results_with_exchnages(evenpazalg.even_paz_dividion, expType.ExperimentType.even_paz_fraud_agent_index, expType.ExperimentType.even_paz_fraud_agent_index_with_exchange, allocations_even_paz_fraud, num_of_agents, noise, i, identical_allocation_last_diminisher_i, expType.ExperimentType.even_paz_fraud_identical, results_by_exp_type) allocations_last_diminisher_fraud = numbersUtils.values_to_allocations(noise_values) calc_results_with_exchnages(LastDiminisher.last_diminisher_allocation, expType.ExperimentType.last_diminisher_fraud_agent_index, expType.ExperimentType.last_diminisher_fraud_agent_index_with_exchange, allocations_last_diminisher_fraud, num_of_agents, noise, i, identical_allocation_last_diminisher_i, expType.ExperimentType.last_diminisher_fraud_identical, results_by_exp_type) #calc mid for type, results in results_by_exp_type.items(): for result in results: #todo: calc average from same type of alg.. pass return results_by_exp_type