Exemple #1
0
def test_detection_demo(device_id):
    if cntk_device(device_id).type() != DeviceKind_GPU:
        pytest.skip('test only runs on GPU')  # it runs very slow in CPU
    try_set_default_device(cntk_device(device_id))

    from prepare_test_data import prepare_Grocery_data, prepare_alexnet_v0_model
    grocery_path = prepare_Grocery_data()
    prepare_alexnet_v0_model()

    from FastRCNN.install_data_and_model import create_grocery_mappings
    create_grocery_mappings(grocery_path)

    from DetectionDemo import get_configuration
    import utils.od_utils as od

    cfg = get_configuration('FasterRCNN')
    cfg["CNTK"].FORCE_DETERMINISTIC = True
    cfg["CNTK"].DEBUG_OUTPUT = False
    cfg["CNTK"].MAKE_MODE = False
    cfg["CNTK"].FAST_MODE = False
    cfg.CNTK.E2E_MAX_EPOCHS = 3
    cfg.CNTK.RPN_EPOCHS = 2
    cfg.CNTK.FRCN_EPOCHS = 2
    cfg.IMAGE_WIDTH = 400
    cfg.IMAGE_HEIGHT = 400
    cfg["CNTK"].TRAIN_E2E = True
    cfg.USE_GPU_NMS = False
    cfg.VISUALIZE_RESULTS = False
    cfg["DATA"].MAP_FILE_PATH = grocery_path

    externalData = 'CNTK_EXTERNAL_TESTDATA_SOURCE_DIRECTORY' in os.environ
    if externalData:
        extPath = os.environ['CNTK_EXTERNAL_TESTDATA_SOURCE_DIRECTORY']
        cfg['BASE_MODEL_PATH'] = os.path.join(extPath, "PreTrainedModels",
                                              "AlexNet", "v1",
                                              "AlexNet_ImageNet_Caffe.model")
    else:
        cfg['BASE_MODEL_PATH'] = os.path.join(
            abs_path,
            *"../../../../PretrainedModels/AlexNet_ImageNet_Caffe.model".split(
                "/"))

    # train and test
    eval_model = od.train_object_detector(cfg)
    eval_results = od.evaluate_test_set(eval_model, cfg)

    meanAP = np.nanmean(list(eval_results.values()))
    print('meanAP={}'.format(meanAP))
    assert meanAP > 0.01

    # detect objects in single image
    img_path = os.path.join(grocery_path, "testImages",
                            "WIN_20160803_11_28_42_Pro.jpg")
    regressed_rois, cls_probs = od.evaluate_single_image(
        eval_model, img_path, cfg)
    bboxes, labels, scores = od.filter_results(regressed_rois, cls_probs, cfg)
    assert bboxes.shape[0] == labels.shape[0]
Exemple #2
0
def test_detection_demo(device_id):
    if cntk_device(device_id).type() != DeviceKind_GPU:
        pytest.skip('test only runs on GPU')  # it runs very slow in CPU
    try_set_default_device(cntk_device(device_id))

    from prepare_test_data import prepare_Grocery_data, prepare_alexnet_v0_model
    grocery_path = prepare_Grocery_data()
    prepare_alexnet_v0_model()

    from FastRCNN.install_data_and_model import create_grocery_mappings
    create_grocery_mappings(grocery_path)

    from DetectionDemo import get_configuration
    import utils.od_utils as od

    cfg = get_configuration('FasterRCNN')
    cfg["CNTK"].FORCE_DETERMINISTIC = True
    cfg["CNTK"].DEBUG_OUTPUT = False
    cfg["CNTK"].MAKE_MODE = False
    cfg["CNTK"].FAST_MODE = False
    cfg.CNTK.E2E_MAX_EPOCHS = 3
    cfg.CNTK.RPN_EPOCHS = 2
    cfg.CNTK.FRCN_EPOCHS = 2
    cfg.IMAGE_WIDTH = 400
    cfg.IMAGE_HEIGHT = 400
    cfg["CNTK"].TRAIN_E2E = True
    cfg.USE_GPU_NMS = False
    cfg.VISUALIZE_RESULTS = False
    cfg["DATA"].MAP_FILE_PATH = grocery_path

    externalData = 'CNTK_EXTERNAL_TESTDATA_SOURCE_DIRECTORY' in os.environ
    if externalData:
        extPath = os.environ['CNTK_EXTERNAL_TESTDATA_SOURCE_DIRECTORY']
        cfg['BASE_MODEL_PATH'] = os.path.join(extPath, "PreTrainedModels", "AlexNet", "v1", "AlexNet_ImageNet_Caffe.model")
    else:
        cfg['BASE_MODEL_PATH'] = os.path.join(abs_path, *"../../../../PretrainedModels/AlexNet_ImageNet_Caffe.model".split("/"))

    # train and test
    eval_model = od.train_object_detector(cfg)
    eval_results = od.evaluate_test_set(eval_model, cfg)

    meanAP = np.nanmean(list(eval_results.values()))
    print('meanAP={}'.format(meanAP))
    assert meanAP > 0.01

    # detect objects in single image
    img_path = os.path.join(grocery_path, "testImages", "WIN_20160803_11_28_42_Pro.jpg")
    regressed_rois, cls_probs = od.evaluate_single_image(eval_model, img_path, cfg)
    bboxes, labels, scores = od.filter_results(regressed_rois, cls_probs, cfg)
    assert bboxes.shape[0] == labels.shape[0]
    from utils.configs.Grocery_config import cfg as dataset_cfg

    return merge_configs(
        [detector_cfg, network_cfg, dataset_cfg, {
            'DETECTOR': detector_name
        }])


if __name__ == '__main__':
    # Currently supported detectors: 'FastRCNN', 'FasterRCNN'
    args = sys.argv
    detector_name = get_detector_name(args)
    cfg = get_configuration(detector_name)

    # train and test
    eval_model = od.train_object_detector(cfg)
    eval_results = od.evaluate_test_set(eval_model, cfg)

    # write AP results to output
    for class_name in eval_results:
        print('AP for {:>15} = {:.4f}'.format(class_name,
                                              eval_results[class_name]))
    print('Mean AP = {:.4f}'.format(np.nanmean(list(eval_results.values()))))

    # detect objects in single image
    img_path = os.path.join(
        os.path.dirname(os.path.abspath(__file__)),
        r"../DataSets/Grocery/testImages/WIN_20160803_11_28_42_Pro.jpg")
    regressed_rois, cls_probs = od.evaluate_single_image(
        eval_model, img_path, cfg)
    bboxes, labels, scores = od.filter_results(regressed_rois, cls_probs, cfg)
Exemple #4
0
    # for AlexNet base model use:       from utils.configs.AlexNet_config import cfg as network_cfg
    from utils.configs.AlexNet_config import cfg as network_cfg
    # for Pascal VOC 2007 data set use: from utils.configs.Pascal_config import cfg as dataset_cfg
    # for the Grocery data set use:     from utils.configs.Grocery_config import cfg as dataset_cfg
    from utils.configs.Grocery_config import cfg as dataset_cfg

    return merge_configs([detector_cfg, network_cfg, dataset_cfg, {'DETECTOR': detector_name}])

if __name__ == '__main__':
    # Currently supported detectors: 'FastRCNN', 'FasterRCNN'
    args = sys.argv
    detector_name = get_detector_name(args)
    cfg = get_configuration(detector_name)

    # train and test
    eval_model = od.train_object_detector(cfg)
    eval_results = od.evaluate_test_set(eval_model, cfg)

    # write AP results to output
    for class_name in eval_results: print('AP for {:>15} = {:.4f}'.format(class_name, eval_results[class_name]))
    print('Mean AP = {:.4f}'.format(np.nanmean(list(eval_results.values()))))

    # detect objects in single image
    img_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), r"../DataSets/Grocery/testImages/WIN_20160803_11_28_42_Pro.jpg")
    regressed_rois, cls_probs = od.evaluate_single_image(eval_model, img_path, cfg)
    bboxes, labels, scores = od.filter_results(regressed_rois, cls_probs, cfg)

    # write detection results to output
    fg_boxes = np.where(labels > 0)
    print("#bboxes: before nms: {}, after nms: {}, foreground: {}".format(len(regressed_rois), len(bboxes), len(fg_boxes[0])))
    for i in fg_boxes[0]: print("{:<12} (label: {:<2}), score: {:.3f}, box: {}".format(
Exemple #5
0
workingDir = os.path.dirname(os.path.abspath(__file__))
detector_name = 'FasterRCNN'


def get_configuration(detector_name):
    # load configs for detector, base network and data set
    from FasterRCNN.FasterRCNN_config import cfg as detector_cfg
    # for AlexNet base model use:       from utils.configs.AlexNet_config import cfg as network_cfg
    from utils.configs.AlexNet_config import cfg as network_cfg
    # for the Fire data set use:     from utils.configs.Prometheus_config import cfg as dataset_cfg
    from utils.configs.Prometheus_config import cfg as dataset_cfg

    return merge_configs(
        [detector_cfg, network_cfg, dataset_cfg, {
            'DETECTOR': detector_name
        }])


if __name__ == '__main__':
    cfg = get_configuration(detector_name)

    # train and test
    eval_model = od.train_object_detector(cfg, "./PretrainedModels")
    eval_results = od.evaluate_test_set(eval_model, cfg)

    # write AP results to output
    for class_name in eval_results:
        print('AP for {:>15} = {:.4f}'.format(class_name,
                                              eval_results[class_name]))

    print('Mean AP = {:.4f}'.format(np.nanmean(list(eval_results.values()))))
def get_model():
    cfg = get_configuration('FasterRCNN')  #os.environ["DETECTOR_NAME"])
    # train and test
    eval_model = train_object_detector(cfg)
    return eval_model