Exemple #1
0
def offline_experiment(doodad_config, variant):
    save_doodad_config(doodad_config)
    parser = argparse.ArgumentParser()
    # parser.add_argument('--env-type', default='gridworld')
    # parser.add_argument('--env-type', default='point_robot_sparse')
    # parser.add_argument('--env-type', default='cheetah_vel')
    parser.add_argument('--env-type', default='ant_semicircle_sparse')
    args, rest_args = parser.parse_known_args(args=[])
    env = args.env_type

    # --- GridWorld ---
    if env == 'gridworld':
        args = args_gridworld.get_args(rest_args)
    # --- PointRobot ---
    elif env == 'point_robot_sparse':
        args = args_point_robot_sparse.get_args(rest_args)
    # --- Mujoco ---
    elif env == 'cheetah_vel':
        args = args_cheetah_vel.get_args(rest_args)
    elif env == 'ant_semicircle_sparse':
        args = args_ant_semicircle_sparse.get_args(rest_args)

    set_gpu_mode(torch.cuda.is_available() and args.use_gpu)

    vae_args = config_utl.load_config_file(
        os.path.join(args.vae_dir, args.env_name, args.vae_model_name,
                     'online_config.json'))
    args = config_utl.merge_configs(
        vae_args, args)  # order of input to this function is important

    # Transform data BAMDP (state relabelling)
    if args.transform_data_bamdp:
        # load VAE for state relabelling
        vae_models_path = os.path.join(args.vae_dir, args.env_name,
                                       args.vae_model_name, 'models')
        vae = VAE(args)
        off_utl.load_trained_vae(vae, vae_models_path)
        # load data and relabel
        save_data_path = os.path.join(args.main_data_dir, args.env_name,
                                      args.relabelled_data_dir)
        os.makedirs(save_data_path)
        dataset, goals = off_utl.load_dataset(data_dir=args.data_dir,
                                              args=args,
                                              arr_type='numpy')
        bamdp_dataset = off_utl.transform_mdps_ds_to_bamdp_ds(
            dataset, vae, args)
        # save relabelled data
        off_utl.save_dataset(save_data_path, bamdp_dataset, goals)

    learner = OfflineMetaLearner(args)

    learner.train()
Exemple #2
0
 def load_vae(self):
     self.vae = VAE(self.args)
     vae_models_path = os.path.join(self.args.vae_dir, self.args.env_name,
                                    self.args.vae_model_name, 'models')
     off_utl.load_trained_vae(self.vae, vae_models_path)
Exemple #3
0
def _borel(
        log_dir,
        pretrained_vae_dir,
        env_type,
        transform_data_bamdp,
        seed,
        path_length,
        meta_episode_len,
        relabelled_data_dir=None,
        offline_buffer_path_to_save_to=None,
        offline_buffer_path='',
        saved_tasks_path='',
        debug=False,
        vae_model_name=None,
        load_buffer_kwargs=None,
        gpu_id=0,
        **kwargs,
):
    if load_buffer_kwargs is None:
        load_buffer_kwargs = {}
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    parser = argparse.ArgumentParser()
    torch.autograd.set_detect_anomaly(True)

    if offline_buffer_path_to_save_to is None:
        offline_buffer_path_to_save_to = os.path.join(log_dir, 'transformed_data')

    # parser.add_argument('--env-type', default='gridworld')
    # parser.add_argument('--env-type', default='point_robot_sparse')
    # parser.add_argument('--env-type', default='cheetah_vel')
    parser.add_argument('--env-type', default=env_type)
    extra_args = []
    for k, v in kwargs.items():
        extra_args.append('--{}'.format(k))
        extra_args.append(str(v))
    args, rest_args = parser.parse_known_args(args=extra_args)
    args = env_name_to_args[env_type].get_args(rest_args)
    set_gpu_mode(torch.cuda.is_available() and args.use_gpu, gpu_id=gpu_id)

    if vae_model_name is None:
        vae_model_name = os.listdir(
            os.path.join(pretrained_vae_dir, args.env_name)
        )[0]

    vae_args = config_utl.load_config_file(os.path.join(pretrained_vae_dir, args.env_name,
                                                        vae_model_name, 'online_config.json'))
    args = config_utl.merge_configs(vae_args, args)     # order of input to this function is important
    # _, env = off_utl.expand_args(args)
    from environments.make_env import make_env
    task_data = joblib.load(saved_tasks_path)
    tasks = task_data['tasks']
    args.presampled_tasks = tasks
    env = make_env(args.env_name,
                   args.max_rollouts_per_task,
                   presampled_tasks=tasks,
                   seed=args.seed)#,
                   # n_tasks=1)

    args.vae_dir = pretrained_vae_dir
    args.data_dir = None
    args.vae_model_name = vae_model_name
    if transform_data_bamdp:
        # Transform data BAMDP (state relabelling)
        # load VAE for state relabelling
        print("performing state-relabeling")
        vae_models_path = os.path.join(pretrained_vae_dir, args.env_name,
                                       vae_model_name, 'models')
        vae = VAE(args)
        off_utl.load_trained_vae(vae, vae_models_path)
        # load data and relabel
        os.makedirs(offline_buffer_path_to_save_to, exist_ok=True)
        dataset, goals = off_utl.load_pearl_buffer(
            offline_buffer_path,
            tasks,
            add_done_info=env.add_done_info,
            path_length=path_length,
            meta_episode_len=meta_episode_len,
            **load_buffer_kwargs
        )
        dataset = [[x.astype(np.float32) for x in d] for d in dataset]
        bamdp_dataset = off_utl.transform_mdps_ds_to_bamdp_ds(dataset, vae, args)
        # save relabelled data
        print("saving state-relabeled data to ", offline_buffer_path_to_save_to)
        off_utl.save_dataset(offline_buffer_path_to_save_to, bamdp_dataset, goals)
        relabelled_data_dir = offline_buffer_path_to_save_to
    args.relabelled_data_dir = relabelled_data_dir
    args.max_rollouts_per_task = 3
    args.results_log_dir = log_dir

    if debug:
        print("DEBUG MODE ON")
        args.rl_updates_per_iter = 1
        args.log_interval = 1
    learner = OfflineMetaLearner(args)

    learner.train()