num_estimates = timesteps + max(ais_meas_rate, radar_meas_rate) generate_scenario_3(seed=seed, permanent_save=False, radar_meas_rate=radar_meas_rate, ais_meas_rate=ais_meas_rate, sigma_process=sigma_process, sigma_meas_radar=sigma_meas_radar, sigma_meas_ais=sigma_meas_ais, timesteps=timesteps) folder = "temp" # temp instead of seed, as it is not a permanent save # load ground truth and the measurements data_folder = "../scenarios/scenario3/" + folder + "/" ground_truth = open_object.open_object(data_folder + "ground_truth.pk1") measurements_radar = open_object.open_object(data_folder + "measurements_radar.pk1") measurements_ais = open_object.open_object(data_folder + "measurements_ais.pk1") # load start_time start_time = open_object.open_object(data_folder + "start_time.pk1") # prior prior = GaussianState([0, 1, 0, 1], np.diag([1.5, 0.5, 1.5, 0.5])**2, timestamp=start_time) kf_independent_fusion = kalman_filter_independent_fusion( start_time,
from stonesoup.models.transition.linear import CombinedLinearGaussianTransitionModel, ConstantVelocity from stonesoup.predictor.kalman import KalmanPredictor from stonesoup.types.state import GaussianState from stonesoup.updater.kalman import KalmanUpdater from stonesoup.types.hypothesis import SingleHypothesis from stonesoup.types.track import Track from utils import open_object from data_fusion import track_to_track_association from data_fusion import track_to_track_fusion from trackers.calc_cross_cov_estimate_error import calc_cross_cov_estimate_error # load ground truth and the measurements ground_truth = open_object.open_object( "../scenarios/scenario2/ground_truth.pk1") measurements_radar = open_object.open_object( "../scenarios/scenario2/measurements_radar.pk1") measurements_ais = open_object.open_object( "../scenarios/scenario2/measurements_ais.pk1") # load start_time start_time = open_object.open_object("../scenarios/scenario2/start_time.pk1") # same transition models (radar uses same as original) transition_model_radar = CombinedLinearGaussianTransitionModel( [ConstantVelocity(0.01), ConstantVelocity(0.01)]) transition_model_ais = CombinedLinearGaussianTransitionModel( [ConstantVelocity(0.01), ConstantVelocity(0.01)]) # same measurement models as used when generating the measurements