def main(args): """main""" model_config = UNIMOConfig(args.unimo_config_path) model_config.print_config() gpu_id = 0 gpus = fluid.core.get_cuda_device_count() if args.is_distributed and os.getenv("FLAGS_selected_gpus") is not None: gpu_list = os.getenv("FLAGS_selected_gpus").split(",") gpus = len(gpu_list) gpu_id = int(gpu_list[0]) if args.use_cuda: place = fluid.CUDAPlace(gpu_id) dev_count = gpus else: place = fluid.CPUPlace() dev_count = int(os.environ.get('CPU_NUM', multiprocessing.cpu_count())) tokenizer = GptBpeTokenizer(vocab_file=args.unimo_vocab_file, encoder_json_file=args.encoder_json_file, vocab_bpe_file=args.vocab_bpe_file, do_lower_case=args.do_lower_case) data_reader = RegressionReader(tokenizer, args) if not (args.do_train or args.do_val or args.do_test): raise ValueError("For args `do_train`, `do_val` and `do_test`, at " "least one of them must be True.") startup_prog = fluid.Program() if args.random_seed is not None: startup_prog.random_seed = args.random_seed if args.do_train: trainers_num = int(os.getenv("PADDLE_TRAINERS_NUM", "1")) train_data_generator = data_reader.data_generator( input_file=args.train_set, batch_size=args.batch_size, epoch=args.epoch, dev_count=trainers_num, shuffle=True, phase="train") num_train_examples = data_reader.get_num_examples(args.train_set) if args.in_tokens: max_train_steps = args.epoch * num_train_examples // ( args.batch_size // args.max_seq_len) // trainers_num else: max_train_steps = args.epoch * num_train_examples // args.batch_size // trainers_num warmup_steps = int(max_train_steps * args.warmup_proportion) print("Device count: %d, gpu_id: %d" % (dev_count, gpu_id)) print("Num train examples: %d" % num_train_examples) print("Max train steps: %d" % max_train_steps) print("Num warmup steps: %d" % warmup_steps) train_program = fluid.Program() with fluid.program_guard(train_program, startup_prog): with fluid.unique_name.guard(): train_pyreader, graph_vars = create_model( args, pyreader_name='train_reader', config=model_config) scheduled_lr, loss_scaling = optimization( loss=graph_vars["loss"], warmup_steps=warmup_steps, num_train_steps=max_train_steps, learning_rate=args.learning_rate, train_program=train_program, weight_decay=args.weight_decay, scheduler=args.lr_scheduler, use_fp16=args.use_fp16, use_dynamic_loss_scaling=args.use_dynamic_loss_scaling, init_loss_scaling=args.init_loss_scaling, beta1=args.beta1, beta2=args.beta2, epsilon=args.epsilon) if args.verbose: if args.in_tokens: lower_mem, upper_mem, unit = fluid.contrib.memory_usage( program=train_program, batch_size=args.batch_size // args.max_seq_len) else: lower_mem, upper_mem, unit = fluid.contrib.memory_usage( program=train_program, batch_size=args.batch_size) print("Theoretical memory usage in training: %.3f - %.3f %s" % (lower_mem, upper_mem, unit)) if args.do_val or args.do_test or args.do_pred: test_prog = fluid.Program() with fluid.program_guard(test_prog, startup_prog): with fluid.unique_name.guard(): test_pyreader, graph_vars = create_model( args, pyreader_name='test_reader', config=model_config) test_prog = test_prog.clone(for_test=True) nccl2_num_trainers = 1 nccl2_trainer_id = 0 print("args.is_distributed:", args.is_distributed) if args.is_distributed: trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0")) worker_endpoints_env = os.getenv("PADDLE_TRAINER_ENDPOINTS") current_endpoint = os.getenv("PADDLE_CURRENT_ENDPOINT") worker_endpoints = worker_endpoints_env.split(",") trainers_num = len(worker_endpoints) print("worker_endpoints:{} trainers_num:{} current_endpoint:{} \ trainer_id:{}".format(worker_endpoints, trainers_num, current_endpoint, trainer_id)) # prepare nccl2 env. config = fluid.DistributeTranspilerConfig() config.mode = "nccl2" if args.nccl_comm_num > 1: config.nccl_comm_num = args.nccl_comm_num if args.use_hierarchical_allreduce and trainers_num > args.hierarchical_allreduce_inter_nranks: config.use_hierarchical_allreduce = args.use_hierarchical_allreduce config.hierarchical_allreduce_inter_nranks = args.hierarchical_allreduce_inter_nranks assert config.hierarchical_allreduce_inter_nranks > 1 assert trainers_num % config.hierarchical_allreduce_inter_nranks == 0 config.hierarchical_allreduce_exter_nranks = \ trainers_num / config.hierarchical_allreduce_inter_nranks t = fluid.DistributeTranspiler(config=config) t.transpile( trainer_id, trainers=worker_endpoints_env, current_endpoint=current_endpoint, program=train_program if args.do_train else test_prog, startup_program=startup_prog) nccl2_num_trainers = trainers_num nccl2_trainer_id = trainer_id exe = fluid.Executor(place) exe.run(startup_prog) if args.do_train: if args.init_checkpoint and args.init_pretraining_params: print( "WARNING: args 'init_checkpoint' and 'init_pretraining_params' " "both are set! Only arg 'init_checkpoint' is made valid.") if args.init_checkpoint: init_checkpoint( exe, args.init_checkpoint, main_program=train_program) elif args.init_pretraining_params: init_pretraining_params( exe, args.init_pretraining_params, main_program=train_program) elif args.do_val or args.do_test or args.do_pred: if not args.init_checkpoint: raise ValueError("args 'init_checkpoint' should be set if" "only doing validation or testing!") init_checkpoint( exe, args.init_checkpoint, main_program=startup_prog) if args.do_train: exec_strategy = fluid.ExecutionStrategy() if args.use_fast_executor: exec_strategy.use_experimental_executor = True exec_strategy.num_threads = dev_count exec_strategy.num_iteration_per_drop_scope = args.num_iteration_per_drop_scope train_exe = fluid.ParallelExecutor( use_cuda=args.use_cuda, loss_name=graph_vars["loss"].name, exec_strategy=exec_strategy, main_program=train_program, num_trainers=nccl2_num_trainers, trainer_id=nccl2_trainer_id) train_pyreader.decorate_tensor_provider(train_data_generator) else: train_exe = None test_exe = exe if args.do_val or args.do_test or args.do_pred: if args.use_multi_gpu_test: test_exe = fluid.ParallelExecutor( use_cuda=args.use_cuda, main_program=test_prog, share_vars_from=train_exe) dev_ret_history = [] # (steps, key_eval, eval) if args.do_train: train_pyreader.start() steps = 0 if warmup_steps > 0: graph_vars["learning_rate"] = scheduled_lr time_begin = time.time() skip_steps = args.skip_steps while True: try: steps += 1 if steps % skip_steps == 0: train_fetch_list = [ graph_vars["loss"].name, ] if "learning_rate" in graph_vars: train_fetch_list.append(graph_vars["learning_rate"].name) res = train_exe.run(fetch_list=train_fetch_list) outputs = {"loss": np.mean(res[0])} if "learning_rate" in graph_vars: outputs["learning_rate"] = float(res[1][0]) if args.verbose: verbose = "train pyreader queue size: %d, " % train_pyreader.queue.size( ) verbose += "learning rate: %f" % ( outputs["learning_rate"] if warmup_steps > 0 else args.learning_rate) print(verbose) current_example, current_epoch = data_reader.get_train_progress() time_end = time.time() used_time = time_end - time_begin print("%s - epoch: %d, progress: %d/%d, step: %d, ave loss: %f, speed: %f steps/s" % \ (get_time(), current_epoch, current_example, num_train_examples, steps, \ outputs["loss"], args.skip_steps / used_time)) time_begin = time.time() else: train_exe.run(fetch_list=[]) if nccl2_trainer_id == 0: if steps % args.save_steps == 0 and args.save_checkpoints: save_path = os.path.join(args.checkpoints, "step_" + str(steps)) fluid.io.save_persistables(exe, save_path, train_program) if steps % args.validation_steps == 0: # evaluate dev set if args.do_val: test_pyreader.decorate_tensor_provider( data_reader.data_generator( args.dev_set, batch_size=args.batch_size, epoch=1, dev_count=1, shuffle=False)) outputs = evaluate(args, test_exe, test_prog, test_pyreader, graph_vars, "dev") dev_ret_history.append((steps, outputs['key_eval'], outputs[outputs['key_eval']])) # evaluate test set if args.do_test: test_pyreader.decorate_tensor_provider( data_reader.data_generator( args.test_set, batch_size=args.batch_size, epoch=1, dev_count=1, shuffle=False)) outputs = evaluate(args, test_exe, test_prog, test_pyreader, graph_vars, "test") if args.do_pred: test_pyreader.decorate_tensor_provider( data_reader.data_generator( args.test_set, batch_size=args.batch_size, epoch=1, dev_count=1, shuffle=False)) qids, preds, probs = predict(test_exe, test_prog, test_pyreader, graph_vars, dev_count=1) save_path = args.pred_save + '.test.' + str(steps) + '.txt' print("testing {}, save to {}".format(args.test_set, save_path)) with open(save_path, 'w') as f: for id, s, p in zip(qids, preds, probs): f.write('{}\t{}\t{}\n'.format(id, s, p)) except fluid.core.EOFException: if args.save_checkpoints: save_path = os.path.join(args.checkpoints, "step_" + str(steps)) fluid.io.save_persistables(exe, save_path, train_program) train_pyreader.reset() break if nccl2_trainer_id == 0: # final eval on dev set if args.do_val: test_pyreader.decorate_tensor_provider( data_reader.data_generator( args.dev_set, batch_size=args.batch_size, epoch=1, dev_count=1, shuffle=False)) print("Final validation result:") outputs = evaluate(args, test_exe, test_prog, test_pyreader, graph_vars, "dev") dev_ret_history.append((steps, outputs['key_eval'], outputs[outputs['key_eval']])) dev_ret_history = sorted(dev_ret_history, key=lambda a: a[2], reverse=True) print("Best validation result: step %d %s %f" \ % (dev_ret_history[0][0], dev_ret_history[0][1], dev_ret_history[0][2])) # final eval on test set if args.do_test: test_pyreader.decorate_tensor_provider( data_reader.data_generator( args.test_set, batch_size=args.batch_size, epoch=1, dev_count=1, shuffle=False)) print("Final test result:") outputs = evaluate(args, test_exe, test_prog, test_pyreader, graph_vars, "test") # final eval on test set if args.do_pred: test_pyreader.decorate_tensor_provider( data_reader.data_generator( args.test_set, batch_size=args.batch_size, epoch=1, dev_count=1, shuffle=False)) qids, preds, probs = predict(test_exe, test_prog, test_pyreader, graph_vars, dev_count=1) save_path = args.pred_save + '.' + str(steps) + '.txt' print("testing {}, save to {}".format(args.test_set, save_path)) with open(save_path, 'w') as f: for id, s, p in zip(qids, preds, probs): f.write('{}\t{}\t{}\n'.format(id, s, p))
def main(args): ernie_config = ErnieConfig( os.path.join(args.model_path, "ernie_config.json")) ernie_config.print_config() if args.use_cuda: dev_list = fluid.cuda_places() place = dev_list[0] dev_count = len(dev_list) else: place = fluid.CPUPlace() dev_count = int(os.environ.get('CPU_NUM', multiprocessing.cpu_count())) reader = DocREDReader(vocab_path=os.path.join(args.model_path, "vocab.txt"), label_map_config=os.path.join( args.data_path, "label_map.json"), max_seq_len=args.max_seq_len, max_ent_cnt=args.max_ent_cnt, do_lower_case=args.do_lower_case, in_tokens=args.in_tokens, random_seed=args.random_seed) if not (args.do_train or args.do_val or args.do_test): raise ValueError("For args `do_train`, `do_val` and `do_test`, at " "least one of them must be True.") startup_prog = fluid.Program() if args.random_seed is not None: startup_prog.random_seed = args.random_seed if args.do_train: train_data_generator = reader.data_generator( data_dir=args.data_path, mode='train', batch_size=args.batch_size, epoch=args.epoch) num_train_examples = reader.get_num_train_examples(args.data_path) if args.in_tokens: if args.batch_size < args.max_seq_len: raise ValueError( 'if in_tokens=True, batch_size should greater than max_sqelen, got batch_size:%d seqlen:%d' % (args.batch_size, args.max_seq_len)) max_train_steps = args.epoch * num_train_examples // ( args.batch_size // args.max_seq_len) // dev_count else: max_train_steps = args.epoch * num_train_examples // args.batch_size // dev_count warmup_steps = int(max_train_steps * args.warmup_proportion) log.info("Device count: %d" % dev_count) log.info("Num train examples: %d" % num_train_examples) log.info("Max train steps: %d" % max_train_steps) log.info("Num warmup steps: %d" % warmup_steps) train_program = fluid.Program() with fluid.program_guard(train_program, startup_prog): with fluid.unique_name.guard(): train_pyreader, graph_vars = create_model( args, pyreader_name='train_reader', ernie_config=ernie_config) scheduled_lr, loss_scaling = optimization( loss=graph_vars["loss"], warmup_steps=warmup_steps, num_train_steps=max_train_steps, learning_rate=args.learning_rate, train_program=train_program, startup_prog=startup_prog, weight_decay=args.weight_decay, scheduler=args.lr_scheduler, use_fp16=args.use_fp16, use_dynamic_loss_scaling=args.use_dynamic_loss_scaling, init_loss_scaling=args.init_loss_scaling, incr_every_n_steps=args.incr_every_n_steps, decr_every_n_nan_or_inf=args.decr_every_n_nan_or_inf, incr_ratio=args.incr_ratio, decr_ratio=args.decr_ratio) if args.verbose: if args.in_tokens: lower_mem, upper_mem, unit = fluid.contrib.memory_usage( program=train_program, batch_size=args.batch_size // args.max_seq_len) else: lower_mem, upper_mem, unit = fluid.contrib.memory_usage( program=train_program, batch_size=args.batch_size) log.info("Theoretical memory usage in training: %.3f - %.3f %s" % (lower_mem, upper_mem, unit)) if args.do_val or args.do_test: test_prog = fluid.Program() with fluid.program_guard(test_prog, startup_prog): with fluid.unique_name.guard(): test_pyreader, graph_vars = create_model( args, pyreader_name='test_reader', ernie_config=ernie_config) test_prog = test_prog.clone(for_test=True) nccl2_num_trainers = 1 nccl2_trainer_id = 0 if args.is_distributed: trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0")) worker_endpoints_env = os.getenv("PADDLE_TRAINER_ENDPOINTS") current_endpoint = os.getenv("PADDLE_CURRENT_ENDPOINT") worker_endpoints = worker_endpoints_env.split(",") trainers_num = len(worker_endpoints) log.info("worker_endpoints:{} trainers_num:{} current_endpoint:{} \ trainer_id:{}".format(worker_endpoints, trainers_num, current_endpoint, trainer_id)) # prepare nccl2 env. config = fluid.DistributeTranspilerConfig() config.mode = "nccl2" t = fluid.DistributeTranspiler(config=config) t.transpile(trainer_id, trainers=worker_endpoints_env, current_endpoint=current_endpoint, program=train_program if args.do_train else test_prog, startup_program=startup_prog) nccl2_num_trainers = trainers_num nccl2_trainer_id = trainer_id exe = fluid.Executor(place) exe.run(startup_prog) if args.do_train: if args.init_checkpoint: init_checkpoint(exe, args.init_checkpoint, main_program=startup_prog, use_fp16=args.use_fp16) elif args.do_val or args.do_test: if not args.init_checkpoint: raise ValueError("args 'init_checkpoint' should be set if" "only doing validation or testing!") init_checkpoint(exe, args.init_checkpoint, main_program=startup_prog, use_fp16=args.use_fp16) if args.do_train: exec_strategy = fluid.ExecutionStrategy() if args.use_fast_executor: exec_strategy.use_experimental_executor = True exec_strategy.num_threads = dev_count exec_strategy.num_iteration_per_drop_scope = args.num_iteration_per_drop_scope train_exe = fluid.ParallelExecutor(use_cuda=args.use_cuda, loss_name=graph_vars["loss"].name, exec_strategy=exec_strategy, main_program=train_program, num_trainers=nccl2_num_trainers, trainer_id=nccl2_trainer_id) train_pyreader.set_batch_generator(train_data_generator) else: train_exe = None if args.do_val or args.do_test: test_exe = fluid.ParallelExecutor(use_cuda=args.use_cuda, main_program=test_prog, share_vars_from=train_exe) if args.do_train: train_pyreader.start() steps = 0 graph_vars["learning_rate"] = scheduled_lr time_begin = time.time() while True: try: steps += 1 if steps % args.skip_steps != 0: train_exe.run(fetch_list=[]) else: fetch_list = [ graph_vars["loss"].name, graph_vars["logits"].name, graph_vars["ent_masks"].name, graph_vars["label_ids"].name, graph_vars['learning_rate'].name, ] out = train_exe.run(fetch_list=fetch_list) np_loss, np_logits, np_ent_masks, np_label_ids, np_lr = out lr = float(np_lr[0]) loss = np_loss.mean() f1 = batch_eval(np_logits, np_ent_masks, np_label_ids) if args.verbose: log.info( "train pyreader queue size: %d, learning rate: %f" % (train_pyreader.queue.size(), lr if warmup_steps > 0 else args.learning_rate)) current_example, current_epoch = reader.get_train_progress( ) time_end = time.time() used_time = time_end - time_begin log.info( "epoch: %d, progress: %d/%d, step: %d, loss: %f, " "f1: %f, speed: %f steps/s" % (current_epoch, current_example, num_train_examples, steps, loss, f1, args.skip_steps / used_time)) time_begin = time.time() except fluid.core.EOFException: save_path = os.path.join(args.save_checkpoints, "step_" + str(steps)) log.info("saving to checkpoint: " + str(args.save_checkpoints) + "/step_%d" % steps) fluid.io.save_persistables(exe, save_path, train_program) train_pyreader.reset() break # final eval on dev set if nccl2_trainer_id == 0 and args.do_val: if not args.do_train: current_example, current_epoch = reader.get_train_progress() evaluate_wrapper(reader, exe, test_prog, test_pyreader, graph_vars, current_epoch, 'final') if nccl2_trainer_id == 0 and args.do_test: predict_wrapper(reader, exe, test_prog, test_pyreader, graph_vars)
def main(args): """main""" model_config = UNIMOConfig(args.unimo_config_path) model_config.print_config() gpu_id = 0 gpus = fluid.core.get_cuda_device_count() if args.is_distributed and os.getenv("FLAGS_selected_gpus") is not None: gpu_list = os.getenv("FLAGS_selected_gpus").split(",") gpus = len(gpu_list) gpu_id = int(gpu_list[0]) if args.use_cuda: place = fluid.CUDAPlace(gpu_id) dev_count = gpus else: place = fluid.CPUPlace() dev_count = int(os.environ.get('CPU_NUM', multiprocessing.cpu_count())) tokenizer = GptBpeTokenizer(vocab_file=args.unimo_vocab_file, encoder_json_file=args.encoder_json_file, vocab_bpe_file=args.vocab_bpe_file, do_lower_case=args.do_lower_case) if not (args.do_train or args.do_val or args.do_test or args.do_test_hard): raise ValueError( "For args `do_train`, `do_val`, `do_test`, `do_test_hard`, at " "least one of them must be True.") startup_prog = fluid.Program() if args.random_seed is not None: startup_prog.random_seed = args.random_seed trainers_num = int(os.getenv("PADDLE_TRAINERS_NUM", "1")) if args.do_train: train_data_reader = ClassifyReader(args.train_filelist, args.max_seq_len, tokenizer) train_data_generator = train_data_reader.data_generator( batch_size=args.batch_size, epoch=args.epoch, phase="train") if args.num_train_examples: num_train_examples = args.num_train_examples else: num_train_examples = train_data_reader.get_num_examples() step_num_per_epoch = num_train_examples // args.batch_size // trainers_num max_train_steps = args.epoch * step_num_per_epoch warmup_steps = int(max_train_steps * args.warmup_proportion) print("Device count: %d, gpu_id: %d" % (dev_count, gpu_id)) print("Num train examples: %d" % num_train_examples) print("Max train steps: %d" % max_train_steps) print("Num warmup steps: %d" % warmup_steps) train_program = fluid.Program() with fluid.program_guard(train_program, startup_prog): with fluid.unique_name.guard(): train_pyreader, graph_vars = create_model( args, config=model_config, pyreader_name="train_reader", is_train=True) scheduled_lr, loss_scaling = optimization( loss=graph_vars["loss"], warmup_steps=warmup_steps, num_train_steps=max_train_steps, learning_rate=args.learning_rate, train_program=train_program, weight_decay=args.weight_decay, scheduler=args.lr_scheduler, use_fp16=args.use_fp16, use_dynamic_loss_scaling=args.use_dynamic_loss_scaling, init_loss_scaling=args.init_loss_scaling, beta1=args.beta1, beta2=args.beta2, epsilon=args.epsilon) if args.do_val or args.do_test or args.do_test_hard: test_prog = fluid.Program() with fluid.program_guard(test_prog, startup_prog): with fluid.unique_name.guard(): test_pyreader, test_graph_vars = create_model( args, config=model_config, pyreader_name="dev_reader", is_train=False) test_prog = test_prog.clone(for_test=True) if args.do_val: dev_data_reader = ClassifyReader(args.dev_filelist, args.max_seq_len, tokenizer) dev_data_generator = dev_data_reader.data_generator( batch_size=args.test_batch_size, epoch=1, phase="dev") if args.do_test: test_data_reader = ClassifyReader(args.test_filelist, args.max_seq_len, tokenizer) test_data_generator = test_data_reader.data_generator( batch_size=args.test_batch_size, epoch=1, phase="test") if args.do_test_hard: test_hard_data_reader = ClassifyReader(args.test_hard_filelist, args.max_seq_len, tokenizer) test_hard_data_generator = test_hard_data_reader.data_generator( batch_size=args.test_batch_size, epoch=1, phase="test_hard") nccl2_num_trainers = 1 nccl2_trainer_id = 0 print("args.is_distributed:", args.is_distributed) if args.is_distributed: trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0")) worker_endpoints_env = os.getenv("PADDLE_TRAINER_ENDPOINTS") current_endpoint = os.getenv("PADDLE_CURRENT_ENDPOINT") worker_endpoints = worker_endpoints_env.split(",") trainers_num = len(worker_endpoints) print("worker_endpoints:{} trainers_num:{} current_endpoint:{} \ trainer_id:{}".format(worker_endpoints, trainers_num, current_endpoint, trainer_id)) # prepare nccl2 env. config = fluid.DistributeTranspilerConfig() config.mode = "nccl2" if args.nccl_comm_num > 1: config.nccl_comm_num = args.nccl_comm_num if args.use_hierarchical_allreduce and trainers_num > args.hierarchical_allreduce_inter_nranks: config.use_hierarchical_allreduce = args.use_hierarchical_allreduce config.hierarchical_allreduce_inter_nranks = args.hierarchical_allreduce_inter_nranks assert config.hierarchical_allreduce_inter_nranks > 1 assert trainers_num % config.hierarchical_allreduce_inter_nranks == 0 config.hierarchical_allreduce_exter_nranks = \ trainers_num / config.hierarchical_allreduce_inter_nranks t = fluid.DistributeTranspiler(config=config) t.transpile(trainer_id, trainers=worker_endpoints_env, current_endpoint=current_endpoint, program=train_program if args.do_train else test_prog, startup_program=startup_prog) nccl2_num_trainers = trainers_num nccl2_trainer_id = trainer_id exe = fluid.Executor(place) exe.run(startup_prog) if args.do_train: if args.init_checkpoint and args.init_pretraining_params: print( "WARNING: args 'init_checkpoint' and 'init_pretraining_params' " "both are set! Only arg 'init_checkpoint' is made valid.") if args.init_checkpoint: init_checkpoint(exe, args.init_checkpoint, main_program=train_program) elif args.init_pretraining_params: init_pretraining_params(exe, args.init_pretraining_params, main_program=train_program) elif args.do_val or args.do_test or args.do_test_hard: args.init_checkpoint = args.init_pretraining_params if not args.init_checkpoint: raise ValueError("args 'init_checkpoint' should be set if" "only doing validation or testing!") init_checkpoint(exe, args.init_checkpoint, main_program=startup_prog) if args.do_train: exec_strategy = fluid.ExecutionStrategy() if args.use_fast_executor: exec_strategy.use_experimental_executor = True exec_strategy.num_threads = 4 if args.use_fp16 else 2 exec_strategy.num_iteration_per_drop_scope = min( args.num_iteration_per_drop_scope, args.skip_steps) build_strategy = fluid.BuildStrategy() build_strategy.remove_unnecessary_lock = False if args.use_fuse: build_strategy.fuse_all_reduce_ops = True train_exe = fluid.ParallelExecutor(use_cuda=args.use_cuda, loss_name=graph_vars["loss"].name, build_strategy=build_strategy, exec_strategy=exec_strategy, main_program=train_program, num_trainers=nccl2_num_trainers, trainer_id=nccl2_trainer_id) train_pyreader.decorate_tensor_provider(train_data_generator) else: train_exe = None if args.do_val or args.do_test or args.do_test_hard: test_exe = fluid.ParallelExecutor(use_cuda=args.use_cuda, main_program=test_prog, share_vars_from=train_exe) dev_ret_history = [] # (steps, key_eval, eval) test_ret_history = [] # (steps, key_eval, eval) test_hard_ret_history = [] # (steps, key_eval, eval) steps = 0 if args.do_train: train_pyreader.start() time_begin = time.time() skip_steps = args.skip_steps while True: try: steps += 1 if steps % skip_steps == 0: train_fetch_list = [ graph_vars["loss"].name, scheduled_lr.name ] res = train_exe.run(fetch_list=train_fetch_list) outputs = { "loss": np.mean(res[0]), 'learning_rate': float(res[1][0]) } if args.verbose: verbose = "train pyreader queue size: %d, learning_rate: %.10f" % \ (train_pyreader.queue.size(), outputs['learning_rate']) print(verbose) current_epoch, current_example, current_file_index, total_file, current_file = \ train_data_reader.get_progress() time_end = time.time() used_time = time_end - time_begin print("%s - epoch: %d, progress: %d/%d, %d/%d, step: %d, ave loss: %f, speed: %f steps/s" % \ (get_time(), current_epoch, current_example, num_train_examples, current_file_index, \ total_file, steps, outputs["loss"], args.skip_steps / used_time)) time_begin = time.time() else: train_exe.run(fetch_list=[]) if nccl2_trainer_id == 0: if steps % args.save_steps == 0 and args.save_checkpoints: save_path = os.path.join(args.checkpoints, "step_" + str(steps)) fluid.io.save_persistables(exe, save_path, train_program) if steps % args.validation_steps == 0: # evaluate dev set if args.do_val: test_pyreader.decorate_tensor_provider( dev_data_generator) outputs = evaluate(args, test_exe, test_pyreader, test_graph_vars, \ "dev", trainers_num, nccl2_trainer_id) if nccl2_trainer_id == 0: dev_ret_history.append( (steps, outputs['key_eval'], outputs[outputs['key_eval']])) # evaluate test set if args.do_test: test_pyreader.decorate_tensor_provider( test_data_generator) outputs = evaluate(args, test_exe, test_pyreader, test_graph_vars, \ "test", trainers_num, nccl2_trainer_id) if nccl2_trainer_id == 0: test_ret_history.append( (steps, outputs['key_eval'], outputs[outputs['key_eval']])) # evaluate test set if args.do_test_hard: test_pyreader.decorate_tensor_provider( test_hard_data_generator) outputs = evaluate(args, test_exe, test_pyreader, test_graph_vars, \ "test_hard", trainers_num, nccl2_trainer_id) if nccl2_trainer_id == 0: test_hard_ret_history.append( (steps, outputs['key_eval'], outputs[outputs['key_eval']])) except fluid.core.EOFException: if args.save_checkpoints: save_path = os.path.join(args.checkpoints, "step_" + str(steps)) fluid.io.save_persistables(exe, save_path, train_program) train_pyreader.reset() break # final eval on dev set if args.do_val: test_pyreader.decorate_tensor_provider(dev_data_generator) outputs = evaluate(args, test_exe, test_pyreader, test_graph_vars, "dev", trainers_num, nccl2_trainer_id) if nccl2_trainer_id == 0: dev_ret_history.append( (steps, outputs['key_eval'], outputs[outputs['key_eval']])) # final eval on test set if args.do_test: test_pyreader.decorate_tensor_provider(test_data_generator) outputs = evaluate(args, test_exe, test_pyreader, test_graph_vars, "test", trainers_num, nccl2_trainer_id) if nccl2_trainer_id == 0: test_ret_history.append( (steps, outputs['key_eval'], outputs[outputs['key_eval']])) # final eval on test_hard set if args.do_test_hard: test_pyreader.decorate_tensor_provider(test_hard_data_generator) outputs = evaluate(args, test_exe, test_pyreader, test_graph_vars, "test_hard", trainers_num, nccl2_trainer_id) if nccl2_trainer_id == 0: test_hard_ret_history.append( (steps, outputs['key_eval'], outputs[outputs['key_eval']])) if nccl2_trainer_id == 0: if args.do_val: dev_ret_history = sorted(dev_ret_history, key=lambda a: a[2], reverse=True) print("Best validation result: step %d %s %f" % \ (dev_ret_history[0][0], dev_ret_history[0][1], dev_ret_history[0][2]))
def main(args): """main func""" unimo_config = UNIMOConfig(args.unimo_config_path) if args.task_type == "dialog": unimo_config["role_type_size"] = args.role_type_size unimo_config["turn_type_size"] = args.turn_type_size if args.hidden_dropout_prob >= 0: unimo_config["hidden_dropout_prob"] = args.hidden_dropout_prob if args.attention_probs_dropout_prob >= 0: unimo_config[ "attention_probs_dropout_prob"] = args.attention_probs_dropout_prob unimo_config.print_config() if args.pred_batch_size <= 0: args.pred_batch_size = args.batch_size gpu_id = 0 gpus = fluid.core.get_cuda_device_count() if args.is_distributed and os.getenv("FLAGS_selected_gpus") is not None: gpu_list = os.getenv("FLAGS_selected_gpus").split(",") gpus = len(gpu_list) gpu_id = int(gpu_list[0]) if args.use_cuda: place = fluid.CUDAPlace(gpu_id) dev_count = gpus else: place = fluid.CPUPlace() dev_count = int(os.environ.get('CPU_NUM', multiprocessing.cpu_count())) """load vocabulary""" tokenizer = GptBpeTokenizer(vocab_file=args.unimo_vocab_file, encoder_json_file=args.encoder_json_file, vocab_bpe_file=args.vocab_bpe_file, do_lower_case=True) reader = Seq2SeqReader(tokenizer, args) unimo_seq2seq = Seq2Seq(args, unimo_config, tokenizer) if not (args.do_train or args.do_val or args.do_test or args.do_pred): raise ValueError("For args `do_train`, `do_val` and `do_test`, at " "least one of them must be True.") startup_prog = fluid.Program() if args.random_seed is not None: startup_prog.random_seed = args.random_seed if args.do_train: trainers_num = int(os.getenv("PADDLE_TRAINERS_NUM", 1)) train_data_generator = reader.data_generator( input_file=args.train_set, batch_size=args.batch_size, epoch=args.epoch, dev_count=trainers_num, shuffle=True, phase="train") num_train_examples = reader.get_num_examples(args.train_set) if args.in_tokens: max_train_steps = args.epoch * num_train_examples // ( args.batch_size // args.max_seq_len) // trainers_num else: max_train_steps = args.epoch * num_train_examples // args.batch_size // trainers_num warmup_steps = int(max_train_steps * args.warmup_proportion) print("Device count: %d, gpu_id: %d" % (dev_count, gpu_id)) print("Num train examples: %d" % num_train_examples) print("Max train steps: %d" % max_train_steps) print("Num warmup steps: %d" % warmup_steps) train_program = fluid.Program() with fluid.program_guard(train_program, startup_prog): with fluid.unique_name.guard(): train_pyreader, graph_vars = unimo_seq2seq.create_model() scheduled_lr, loss_scaling = optimization( loss=graph_vars["loss"], warmup_steps=warmup_steps, num_train_steps=max_train_steps, learning_rate=args.learning_rate, train_program=train_program, weight_decay=args.weight_decay, scheduler=args.lr_scheduler, use_fp16=args.use_fp16, use_dynamic_loss_scaling=args.use_dynamic_loss_scaling, init_loss_scaling=args.init_loss_scaling, beta1=args.beta1, beta2=args.beta2, epsilon=args.epsilon) if args.verbose: if args.in_tokens: lower_mem, upper_mem, unit = fluid.contrib.memory_usage( program=train_program, batch_size=args.batch_size // args.max_seq_len) else: lower_mem, upper_mem, unit = fluid.contrib.memory_usage( program=train_program, batch_size=args.batch_size) print("Theoretical memory usage in training: %.3f - %.3f %s" % (lower_mem, upper_mem, unit)) if args.do_val or args.do_test or args.do_pred: test_prog = fluid.Program() with fluid.program_guard(test_prog, startup_prog): with fluid.unique_name.guard(): test_pyreader, test_graph_vars = unimo_seq2seq.create_model( decoding=args.do_decode) test_prog = test_prog.clone(for_test=True) nccl2_num_trainers = 1 nccl2_trainer_id = 0 print("args.is_distributed:", args.is_distributed) if args.is_distributed: trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0")) worker_endpoints_env = os.getenv("PADDLE_TRAINER_ENDPOINTS") current_endpoint = os.getenv("PADDLE_CURRENT_ENDPOINT") worker_endpoints = worker_endpoints_env.split(",") trainers_num = len(worker_endpoints) print("worker_endpoints:{} trainers_num:{} current_endpoint:{} \ trainer_id:{}".format(worker_endpoints, trainers_num, current_endpoint, trainer_id)) # prepare nccl2 env. config = fluid.DistributeTranspilerConfig() config.mode = "nccl2" if args.nccl_comm_num > 1: config.nccl_comm_num = args.nccl_comm_num if args.use_hierarchical_allreduce and trainers_num > args.hierarchical_allreduce_inter_nranks: config.use_hierarchical_allreduce = args.use_hierarchical_allreduce config.hierarchical_allreduce_inter_nranks = args.hierarchical_allreduce_inter_nranks assert config.hierarchical_allreduce_inter_nranks > 1 assert trainers_num % config.hierarchical_allreduce_inter_nranks == 0 config.hierarchical_allreduce_exter_nranks = \ trainers_num / config.hierarchical_allreduce_inter_nranks t = fluid.DistributeTranspiler(config=config) t.transpile(trainer_id, trainers=worker_endpoints_env, current_endpoint=current_endpoint, program=train_program if args.do_train else test_prog, startup_program=startup_prog) nccl2_num_trainers = trainers_num nccl2_trainer_id = trainer_id exe = fluid.Executor(place) exe.run(startup_prog) init_model(args, exe, train_program if args.do_train else test_prog) if args.do_train: exec_strategy = fluid.ExecutionStrategy() if args.use_fast_executor: exec_strategy.use_experimental_executor = True exec_strategy.num_threads = 4 if args.use_fp16 else 2 # 2 for fp32 4 for fp16 exec_strategy.num_iteration_per_drop_scope = min( args.num_iteration_per_drop_scope, args.skip_steps) build_strategy = fluid.BuildStrategy() build_strategy.remove_unnecessary_lock = False if args.use_fuse: build_strategy.fuse_all_reduce_ops = True train_exe = fluid.ParallelExecutor(use_cuda=args.use_cuda, loss_name=graph_vars["loss"].name, build_strategy=build_strategy, exec_strategy=exec_strategy, main_program=train_program, num_trainers=nccl2_num_trainers, trainer_id=nccl2_trainer_id) train_pyreader.set_batch_generator(train_data_generator) train_resource = { "exe": train_exe, "program": train_program, "pyreader": train_pyreader } save_model = partial(save_checkpoint, program=train_program, exe=exe) test_dev_count = 1 if args.do_val or args.do_test or args.do_pred: test_exe = exe if args.use_multi_gpu_test: test_dev_count = nccl2_num_trainers test_resource = { "exe": test_exe, "program": test_prog, "pyreader": test_pyreader } eval_data_generator = partial(reader.data_generator, batch_size=args.pred_batch_size, epoch=1, dev_count=test_dev_count, shuffle=False, do_decode=args.do_decode, place=place) eval_func = partial(unimo_seq2seq.evaluate, resource=test_resource, graph_vars=test_graph_vars, dev_count=test_dev_count, output_path=args.checkpoints, gpu_id=nccl2_trainer_id) evaluate = partial(evaluate_datasets, pyreader=test_pyreader, reader=reader, eval_func=eval_func, data_generator=eval_data_generator) if args.do_train: train_pyreader.start() steps = 0 last_epoch = 0 if warmup_steps > 0: graph_vars["learning_rate"] = scheduled_lr time_begin = time.time() skip_steps = args.skip_steps while True: try: steps += 1 if args.save_and_valid_by_epoch: suffix = "epoch_" + str(last_epoch) else: suffix = "step_" + str(steps) if steps % skip_steps == 0: outputs = unimo_seq2seq.evaluate(train_resource, "train", graph_vars) if args.verbose: verbose = "train pyreader queue size: %d, " % train_pyreader.queue.size( ) verbose += "learning rate: %.8f" % ( outputs["learning_rate"] if warmup_steps > 0 else args.learning_rate) print(verbose) if args.in_tokens: current_example, current_epoch = reader.get_train_progress( ) else: current_epoch = steps * args.batch_size * trainers_num // num_train_examples current_example = steps * args.batch_size * trainers_num % num_train_examples time_end = time.time() used_time = time_end - time_begin print("epoch: %d, progress: %d/%d, step: %d, loss: %f, " "ppl: %f, speed: %f steps/s" % (current_epoch, current_example, num_train_examples, steps, outputs["loss"], outputs["ppl"], args.skip_steps / used_time)) time_begin = time.time() if args.visualdl_log and nccl2_trainer_id == 0: visuallog_dict = OrderedDict() visuallog_dict["ppl"] = outputs["ppl"] visualdl_log(visuallog_dict, outputs["ppl"], steps, phase='train') else: train_exe.run(fetch_list=[]) if nccl2_trainer_id >= test_dev_count: continue do_save = False do_eval = False if not args.save_and_valid_by_epoch: if steps % args.save_steps == 0 and nccl2_trainer_id == 0: do_save = True if steps % args.validation_steps == 0: do_eval = True else: if args.in_tokens: current_example, current_epoch = reader.get_train_progress( ) else: current_epoch = steps * args.batch_size * trainers_num // num_train_examples if current_epoch != last_epoch: if nccl2_trainer_id == 0: do_save = True do_eval = True if do_save: save_model(suffix=suffix) if do_eval: evaluate(suffix=suffix) if args.save_and_valid_by_epoch: last_epoch = current_epoch except fluid.core.EOFException: save_model(suffix=suffix) train_pyreader.reset() break if nccl2_trainer_id >= test_dev_count: return if args.do_val or args.do_test or args.do_pred: suffix = "output" if args.do_train: if not args.save_and_valid_by_epoch: suffix = "step_" + str(steps) else: suffix = "epoch_" + str(last_epoch) evaluate(suffix=suffix, do_pred=True)