def calculate_squeezed_accuracy(model, Y, X, X_adv, output_csv_fpath):
    to_csv_1 = calculate_median_smoothed_accuracy(model, Y, X, X_adv)
    to_csv_2 = calculate_color_depth_reduced_accuracy(model, Y, X, X_adv)
    #to_csv_3 = calculate_opencv_adaptive_binary_accuracy(model, Y, X, X_adv)
    #to_csv_4 = calculate_opencv_otsu_binary_accuracy(model, Y, X, X_adv)

    to_csv_list = [to_csv_1, to_csv_2]#, to_csv_3, to_csv_4]

    field_names = list(set(functools.reduce(operator.add, map(lambda x: x[0].keys(), to_csv_list))))
    records = functools.reduce(operator.add, to_csv_list)

    write_to_csv(records, output_csv_fpath, field_names)
    def output_distance_csv(self, X_list, field_name_list, csv_fpath):
        from utils.output import write_to_csv
        distances_list = []
        for X in X_list:
            distances = self.get_distance(X)
            distances_list.append(distances)

        to_csv = []
        for i in range(len(X_list[0])):
            record = {}
            for j, field_name in enumerate(field_name_list):
                if len(distances_list[j]) > i:
                    record[field_name] = distances_list[j][i]
                else:
                    record[field_name] = None
            to_csv.append(record)

        write_to_csv(to_csv, csv_fpath, field_name_list)
def calculate_squeezed_accuracy_new(model, Y_test, X_test, attack_string_list, X_test_adv_list, csv_fpath):
    # Median filter window sizes.
    width_height_list = [[1,1]]

    width_height_list += [ [1, i] for i in range(2,6)]
    width_height_list += [ [i, 1] for i in range(2,6)]
    width_height_list += [ [i, i] for i in range(2,6)]

    to_csv_list = []

    for width, height in width_height_list:
        print ("Median: %d-%d" % (width, height))
        record = {}
        record['width'] = width
        record['height'] = height
        X_squeezed = median_filter_np(X_test, width, height)
        _,accuracy_leg = model.evaluate(X_squeezed, Y_test)
        record['accuracy_leg'] = accuracy_leg

        for i, attack_string in enumerate(attack_string_list):
            X_adv_squeezed = median_filter_np(X_test_adv_list[i], width, height)
            _,accuracy_adv = model.evaluate(X_adv_squeezed, Y_test)
            record[attack_string] = accuracy_adv
        record['npp'] = None
        to_csv_list.append(record)

    # npp list.
    for npp in [256, 128, 64, 32, 16, 8, 4, 2]:
        print ("Color npp: %d" % (npp))
        record = {}
        record['npp'] = npp
        X_squeezed = reduce_precision_np(X_test, npp)
        _,accuracy_leg = model.evaluate(X_squeezed, Y_test)
        record['accuracy_leg'] = accuracy_leg

        for i, attack_string in enumerate(attack_string_list):
            X_adv_squeezed = reduce_precision_np(X_test_adv_list[i], npp)
            _,accuracy_adv = model.evaluate(X_adv_squeezed, Y_test)
            record[attack_string] = accuracy_adv
        record['width'] = record['height'] = None
        to_csv_list.append(record)

    field_names = ['width', 'height', 'npp', 'accuracy_leg'] + attack_string_list
    write_to_csv(to_csv_list, csv_fpath, field_names)
Exemple #4
0
    def evaluate_detections(self, params_str):
        X_train, Y_train, X_test, Y_test = self.get_training_testing_data()

        # Example: --detection "FeatureSqueezing?distance_measure=l1&squeezers=median_smoothing_2,bit_depth_4;"
        detector_names = [ele.strip() for ele in params_str.split(';') if ele.strip()!= '']

        dataset_name = self.dataset_name
        csv_fpath = "./detection_%s_saes.csv" % dataset_name
        fieldnames = ['detector', 'threshold', 'fpr'] + self.attack_names + ['overall']
        to_csv = []

        for detector_name in detector_names:
            detector = self.get_detector_by_name(detector_name)
            if detector is None:
                print ("Skipped an unknown detector [%s]" % detector_name.split('?')[0])
                continue
            detector.train(X_train, Y_train)
            Y_test_pred, Y_test_pred_score = detector.test(X_test)

            accuracy, tpr, fpr, tp, ap = evalulate_detection_test(Y_test, Y_test_pred)
            fprs, tprs, thresholds = roc_curve(Y_test, Y_test_pred_score)
            roc_auc = auc(fprs, tprs)

            print ("Detector: %s" % detector_name)
            print ("Accuracy: %f\tTPR: %f\tFPR: %f\tROC-AUC: %f" % (accuracy, tpr, fpr, roc_auc))

            rec = {}
            rec['detector'] = detector_name
            if hasattr(detector, 'threshold'):
                rec['threshold'] = detector.threshold
            else:
                rec['threshold'] = None
            rec['fpr'] = fpr
            overall_detection_rate_saes = 0
            nb_saes = 0
            for attack_name in self.attack_names:
                # No adversarial examples for training for the current detection methods.
                # X_sae, Y_sae = self.get_sae_testing_data(attack_name)
                if FLAGS.detection_train_test_mode:
                    X_sae, Y_sae = self.get_sae_testing_data(attack_name)
                else:
                    X_sae, Y_sae = self.get_sae_data(attack_name)
                Y_test_pred, Y_test_pred_score = detector.test(X_sae)
                _, tpr, _, tp, ap = evalulate_detection_test(Y_sae, Y_test_pred)
                print ("Detection rate on SAEs: %.4f \t %3d/%3d \t %s" % (tpr, tp, ap, attack_name))
                overall_detection_rate_saes += tpr * len(Y_sae)
                nb_saes += len(Y_sae)
                rec[attack_name] = tpr
                # print ("overall_detection_rate_saes/nb_saes: %d/%d" % (overall_detection_rate_saes, nb_saes))

            print ("Overall detection rate on SAEs: %f (%d/%d)" % (overall_detection_rate_saes/nb_saes, overall_detection_rate_saes, nb_saes))
            rec['overall'] = float(overall_detection_rate_saes/nb_saes)
            to_csv.append(rec)

            # No adversarial examples for training for the current detection methods.
            # X_sae_all, Y_sae_all = self.get_sae_testing_data()
            print ("### Excluding FAEs:")
            if FLAGS.detection_train_test_mode:
                X_nfae_all, Y_nfae_all = self.get_all_non_fae_testing_data()
            else:
                X_nfae_all, Y_nfae_all = self.get_all_non_fae_data()
            Y_pred, Y_pred_score = detector.test(X_nfae_all)
            _, tpr, _, tp, ap = evalulate_detection_test(Y_nfae_all, Y_pred)
            fprs, tprs, thresholds = roc_curve(Y_nfae_all, Y_pred_score)

            # print ("threshold\tfpr\ttpr")
            # for i, threshold  in enumerate(thresholds):
            #     print ("%.4f\t%.4f\t%.4f" % (threshold, fprs[i], tprs[i]))

            roc_auc = auc(fprs, tprs)
            print ("Overall TPR: %f\tROC-AUC: %f" % (tpr, roc_auc))

            # FAEs
            if FLAGS.detection_train_test_mode:
                X_fae, Y_fae = self.get_fae_testing_data()
            else:
                X_fae, Y_fae = self.get_fae_data()
            if X_fae is not None:
                Y_test_pred, Y_test_pred_score = detector.test(X_fae)
                _, tpr, _, tp, ap = evalulate_detection_test(Y_fae, Y_test_pred)
                print ("Overall detection rate on FAEs: %.4f \t %3d/%3d" % (tpr, tp, ap))
            else:
                print("FAE data must have had no failures... cannot run.")
        write_to_csv(to_csv, csv_fpath, fieldnames)
def main(argv=None):

    dataset = ImageNetDataset()
    # 1. Load a dataset.
    print("\n===Loading %s data...")
    if FLAGS.model_name == 'inceptionv3':
        img_size = 299
    else:
        img_size = 224
    X_test_all, Y_test_all = dataset.get_test_data(img_size, 0, 200)

    # 2. Load a trained model.
    sess = load_tf_session()
    keras.backend.set_learning_phase(0)
    x = tf.placeholder(tf.float32,
                       shape=(None, dataset.image_size, dataset.image_size,
                              dataset.num_channels))
    y = tf.placeholder(tf.float32, shape=(None, dataset.num_classes))

    with tf.variable_scope(FLAGS.model_name):
        """
        Create a model instance for prediction.
        The scaling argument, 'input_range_type': {1: [0,1], 2:[-0.5, 0.5], 3:[-1, 1]...}
        """
        model = dataset.load_model_by_name(FLAGS.model_name,
                                           logits=False,
                                           input_range_type=1)
        model.compile(loss='categorical_crossentropy',
                      optimizer='sgd',
                      metrics=['acc'])

    # 3. Evaluate the trained model.
    print("Evaluating the pre-trained model...")
    # add our 2 pass FD method
    X_test_all = FD_jpeg_encode(X_test_all)
    Y_pred_all = model.predict(X_test_all)
    mean_conf_all = calculate_mean_confidence(Y_pred_all, Y_test_all)
    accuracy_all = calculate_accuracy(Y_pred_all, Y_test_all)
    print('Test accuracy on raw legitimate examples %.4f' % (accuracy_all))
    print('Mean confidence on ground truth classes %.4f' % (mean_conf_all))

    # 4. Select some examples to attack.
    if FLAGS.select:
        # Filter out the misclassified examples.
        correct_idx = get_correct_prediction_idx(Y_pred_all, Y_test_all)
        if FLAGS.test_mode:
            # Only select the first example of each class.
            correct_and_selected_idx = get_first_n_examples_id_each_class(
                Y_test_all[correct_idx])

            selected_idx = [correct_idx[i] for i in correct_and_selected_idx]
        else:
            if not FLAGS.balance_sampling:
                selected_idx = correct_idx[:FLAGS.nb_examples]
            else:
                # select the same number of examples for each class label.
                nb_examples_per_class = int(FLAGS.nb_examples /
                                            Y_test_all.shape[1])
                correct_and_selected_idx = get_first_n_examples_id_each_class(
                    Y_test_all[correct_idx], n=nb_examples_per_class)
                selected_idx = [
                    correct_idx[i] for i in correct_and_selected_idx
                ]
    else:
        selected_idx = np.array(range(FLAGS.nb_examples))

    from utils.output import format_number_range
    selected_example_idx_ranges = format_number_range(sorted(selected_idx))
    print("Selected %d examples." % len(selected_idx))
    print("Selected index in test set (sorted): %s" %
          selected_example_idx_ranges)
    X_test, Y_test, Y_pred = X_test_all[selected_idx], Y_test_all[
        selected_idx], Y_pred_all[selected_idx]

    # The accuracy should be 100%.
    accuracy_selected = calculate_accuracy(Y_pred, Y_test)
    mean_conf_selected = calculate_mean_confidence(Y_pred, Y_test)
    print('Test accuracy on selected legitimate examples %.4f' %
          (accuracy_selected))
    print('Mean confidence on ground truth classes, selected %.4f\n' %
          (mean_conf_selected))

    task = {}
    task['dataset_name'] = "ImageNet"
    task['model_name'] = FLAGS.model_name
    task['accuracy_test'] = accuracy_all
    task['mean_confidence_test'] = mean_conf_all

    task['test_set_selected_length'] = len(selected_idx)
    task['test_set_selected_idx_ranges'] = selected_example_idx_ranges
    task['test_set_selected_idx_hash'] = hashlib.sha1(
        str(selected_idx).encode('utf-8')).hexdigest()
    task['accuracy_test_selected'] = accuracy_selected
    task['mean_confidence_test_selected'] = mean_conf_selected

    task_id = "%s_%d_%s_%s" % \
            (task['dataset_name'], task['test_set_selected_length'], task['test_set_selected_idx_hash'][:5], task['model_name'])

    FLAGS.result_folder = os.path.join(FLAGS.result_folder, task_id)
    if not os.path.isdir(FLAGS.result_folder):
        os.makedirs(FLAGS.result_folder)

    from utils.output import save_task_descriptor
    save_task_descriptor(FLAGS.result_folder, [task])

    # 5. Generate adversarial examples.
    from attacks import maybe_generate_adv_examples
    from utils.squeeze import reduce_precision_py
    from utils.parameter_parser import parse_params

    attack_string_hash = hashlib.sha1(
        FLAGS.attacks.encode('utf-8')).hexdigest()[:5]
    sample_string_hash = task['test_set_selected_idx_hash'][:5]

    from datasets.datasets_utils import get_next_class, get_least_likely_class
    Y_test_target_next = get_next_class(Y_test)
    Y_test_target_ll = get_least_likely_class(Y_pred)

    X_test_adv_list = []
    X_test_adv_discretized_list = []
    Y_test_adv_discretized_pred_list = []

    attack_string_list = filter(lambda x: len(x) > 0,
                                FLAGS.attacks.lower().split(';'))
    to_csv = []

    X_adv_cache_folder = os.path.join(FLAGS.result_folder, 'adv_examples')
    adv_log_folder = os.path.join(FLAGS.result_folder, 'adv_logs')
    predictions_folder = os.path.join(FLAGS.result_folder, 'predictions')
    for folder in [X_adv_cache_folder, adv_log_folder, predictions_folder]:
        if not os.path.isdir(folder):
            os.makedirs(folder)

    predictions_fpath = os.path.join(predictions_folder, "legitimate.npy")
    np.save(predictions_fpath, Y_pred, allow_pickle=False)

    if FLAGS.clip >= 0:
        epsilon = FLAGS.clip
        print("Clip the adversarial perturbations by +-%f" % epsilon)
        max_clip = np.clip(X_test + epsilon, 0, 1)
        min_clip = np.clip(X_test - epsilon, 0, 1)

    for attack_string in attack_string_list:
        attack_log_fpath = os.path.join(adv_log_folder,
                                        "%s_%s.log" % (task_id, attack_string))
        attack_name, attack_params = parse_params(attack_string)
        print("\nRunning attack: %s %s" % (attack_name, attack_params))

        if 'targeted' in attack_params:
            targeted = attack_params['targeted']
            print("targeted value: %s" % targeted)
            if targeted == 'next':
                Y_test_target = Y_test_target_next
            elif targeted == 'll':
                Y_test_target = Y_test_target_ll
            elif targeted == False:
                attack_params['targeted'] = False
                Y_test_target = Y_test.copy()
        else:
            targeted = False
            attack_params['targeted'] = False
            Y_test_target = Y_test.copy()

        x_adv_fname = "%s_%s.pickle" % (task_id, attack_string)
        x_adv_fpath = os.path.join(X_adv_cache_folder, x_adv_fname)

        X_test_adv, aux_info = maybe_generate_adv_examples(
            sess,
            model,
            x,
            y,
            X_test,
            Y_test_target,
            attack_name,
            attack_params,
            use_cache=x_adv_fpath,
            verbose=FLAGS.verbose,
            attack_log_fpath=attack_log_fpath)
        # add our 1 pass FD method
        X_test_adv = FD_jpeg_encode(X_test_adv)
        Y_pred_def = model.predict(X_test_adv)
        accuracy_def = calculate_accuracy(Y_pred_def, Y_test)
        print('Test accuracy on def examples %.4f' % (accuracy_def))

        if FLAGS.clip > 0:
            # This is L-inf clipping.
            X_test_adv = np.clip(X_test_adv, min_clip, max_clip)

        X_test_adv_list.append(X_test_adv)

        if isinstance(aux_info, float):
            duration = aux_info
        else:
            duration = aux_info['duration']

        dur_per_sample = duration / len(X_test_adv)

        # 5.0 Output predictions.

        Y_test_adv_pred = model.predict(X_test_adv)
        predictions_fpath = os.path.join(predictions_folder,
                                         "%s.npy" % attack_string)
        np.save(predictions_fpath, Y_test_adv_pred, allow_pickle=False)

        # 5.1 Evaluate the adversarial examples being discretized to uint8.
        print("\n---Attack (uint8): %s" % attack_string)
        # All data should be discretized to uint8.
        X_test_adv_discret = reduce_precision_py(X_test_adv, 256)
        X_test_adv_discretized_list.append(X_test_adv_discret)
        Y_test_adv_discret_pred = model.predict(X_test_adv_discret)
        Y_test_adv_discretized_pred_list.append(Y_test_adv_discret_pred)

        rec = evaluate_adversarial_examples(X_test, Y_test, X_test_adv_discret,
                                            Y_test_target.copy(), targeted,
                                            Y_test_adv_discret_pred)
        rec['dataset_name'] = "ImageNet"
        rec['model_name'] = FLAGS.model_name
        rec['attack_string'] = attack_string
        rec['duration_per_sample'] = dur_per_sample
        rec['discretization'] = True
        to_csv.append(rec)

    from utils.output import write_to_csv
    attacks_evaluation_csv_fpath = os.path.join(FLAGS.result_folder,
            "%s_attacks_%s_evaluation.csv" % \
            (task_id, attack_string_hash))
    fieldnames = [
        'dataset_name', 'model_name', 'attack_string', 'duration_per_sample',
        'discretization', 'success_rate', 'mean_confidence', 'mean_l2_dist',
        'mean_li_dist', 'mean_l0_dist_value', 'mean_l0_dist_pixel'
    ]
    write_to_csv(to_csv, attacks_evaluation_csv_fpath, fieldnames)

    if FLAGS.visualize is True:
        from datasets.visualization import show_imgs_in_rows
        if FLAGS.test_mode or FLAGS.balance_sampling:
            selected_idx_vis = range(Y_test.shape[1])
        else:
            selected_idx_vis = get_first_n_examples_id_each_class(Y_test, 1)

        legitimate_examples = X_test[selected_idx_vis]

        rows = [legitimate_examples]
        rows += map(lambda x: x[selected_idx_vis], X_test_adv_list)

        img_fpath = os.path.join(
            FLAGS.result_folder,
            '%s_attacks_%s_examples.png' % (task_id, attack_string_hash))
        show_imgs_in_rows(rows, img_fpath)
        print('\n===Adversarial image examples are saved in ', img_fpath)
Exemple #6
0
def main(argv=None):
    # 0. Select a dataset.
    from datasets import MNISTDataset, CIFAR10Dataset, ImageNetDataset
    from datasets import get_correct_prediction_idx, evaluate_adversarial_examples, calculate_mean_confidence, \
        calculate_accuracy

    if FLAGS.dataset_name == "MNIST":
        dataset = MNISTDataset()
    elif FLAGS.dataset_name == "CIFAR-10":
        dataset = CIFAR10Dataset()
        FLAGS.image_size = 32  # Redundant for the Current Attack.
    elif FLAGS.dataset_name == "ImageNet":
        dataset = ImageNetDataset()
        FLAGS.image_size = 224  # Redundant for the Current Attack.

    # 1. Load a dataset.
    print("\n===Loading %s data..." % FLAGS.dataset_name)
    if FLAGS.dataset_name == 'ImageNet':
        if FLAGS.model_name == 'inceptionv3':
            img_size = 299
        else:
            img_size = 224
        X_test_all, Y_test_all = dataset.get_test_data(img_size, 0, 200)
    else:
        X_test_all, Y_test_all = dataset.get_test_dataset()

    # Randomized optimizations
    if FLAGS.dataset_name != "ImageNet":
        all_idx = np.arange(10000)
        np.random.shuffle(all_idx)
        selected_idx = all_idx[:(FLAGS.nb_examples * 2)]
        X_test_all, Y_test_all = X_test_all[selected_idx], Y_test_all[
            selected_idx]

    # 2. Load a trained model.
    sess = load_tf_session()
    keras.backend.set_learning_phase(0)

    # Define input TF placeholder
    x = tf.placeholder(tf.float32,
                       shape=(None, dataset.image_size, dataset.image_size,
                              dataset.num_channels))
    y = tf.placeholder(tf.float32, shape=(None, dataset.num_classes))

    sq_list = FLAGS.squeezers.split(';')
    print(" Squeezers used for EOT :", sq_list)

    x_s = []
    squeezers = []
    models = []
    for squeezer in sq_list:
        x_s.append(
            tf.placeholder(tf.float32,
                           shape=(None, dataset.image_size, dataset.image_size,
                                  dataset.num_channels)))
        if squeezer.startswith("median"):
            squeezers.append(lambda x: x)
            with tf.variable_scope(FLAGS.model_name + squeezer):
                cur_model = dataset.load_model_by_name(
                    FLAGS.model_name,
                    logits=False,
                    input_range_type=1,
                    pre_filter=get_squeezer_by_name(squeezer, 'tensorflow'))
                cur_model.compile(loss='categorical_crossentropy',
                                  optimizer='sgd',
                                  metrics=['acc'])
                models.append(cur_model)
        else:
            squeezers.append(get_squeezer_by_name(squeezer, 'python'))
            with tf.variable_scope(FLAGS.model_name + "local" + squeezer):
                cur_model = dataset.load_model_by_name(FLAGS.model_name,
                                                       logits=False,
                                                       input_range_type=1)
                cur_model.compile(loss='categorical_crossentropy',
                                  optimizer='sgd',
                                  metrics=['acc'])
                models.append(cur_model)

    with tf.variable_scope(FLAGS.model_name + "vanilla"):
        model_vanilla = dataset.load_model_by_name(FLAGS.model_name,
                                                   logits=False,
                                                   input_range_type=1)
        model_vanilla.compile(loss='categorical_crossentropy',
                              optimizer='sgd',
                              metrics=['acc'])

    # 3. Evaluate the trained model.
    # TODO: add top-5 accuracy for ImageNet.
    print("Evaluating the pre-trained model...")

    # We use the Vanilla Model here for Prediction
    print(
        "  ************************************************* Shape of X_test_all :",
        X_test_all.shape)
    Y_pred_all = model_vanilla.predict(X_test_all)
    mean_conf_all = calculate_mean_confidence(Y_pred_all, Y_test_all)
    accuracy_all = calculate_accuracy(Y_pred_all, Y_test_all)
    print('Test accuracy on raw legitimate examples %.4f' % (accuracy_all))
    print('Mean confidence on ground truth classes %.4f' % (mean_conf_all))

    # 4. Select some examples to attack.
    import hashlib
    from datasets import get_first_n_examples_id_each_class

    if FLAGS.select:
        # Filter out the misclassified examples.
        correct_idx = get_correct_prediction_idx(Y_pred_all, Y_test_all)
        if FLAGS.test_mode:
            # Only select the first example of each class.
            correct_and_selected_idx = get_first_n_examples_id_each_class(
                Y_test_all[correct_idx])
            selected_idx = [correct_idx[i] for i in correct_and_selected_idx]
        else:
            if not FLAGS.balance_sampling:
                selected_idx = correct_idx[:FLAGS.nb_examples]
            else:
                # select the same number of examples for each class label.
                nb_examples_per_class = int(FLAGS.nb_examples /
                                            Y_test_all.shape[1])
                correct_and_selected_idx = get_first_n_examples_id_each_class(
                    Y_test_all[correct_idx], n=nb_examples_per_class)
                selected_idx = [
                    correct_idx[i] for i in correct_and_selected_idx
                ]
    else:
        selected_idx = np.array(range(FLAGS.nb_examples))

    from utils.output import format_number_range
    selected_example_idx_ranges = format_number_range(sorted(selected_idx))
    print("Selected %d examples." % len(selected_idx))
    print("Selected index in test set (sorted): %s" %
          selected_example_idx_ranges)
    X_test, Y_test, Y_pred = X_test_all[selected_idx], Y_test_all[
        selected_idx], Y_pred_all[selected_idx]

    # The accuracy should be 100%.
    accuracy_selected = calculate_accuracy(Y_pred, Y_test)
    mean_conf_selected = calculate_mean_confidence(Y_pred, Y_test)
    print('Test accuracy on selected legitimate examples %.4f' %
          (accuracy_selected))
    print('Mean confidence on ground truth classes, selected %.4f\n' %
          (mean_conf_selected))

    task = {}
    task['dataset_name'] = FLAGS.dataset_name
    task['model_name'] = FLAGS.model_name
    task['accuracy_test'] = accuracy_all
    task['mean_confidence_test'] = mean_conf_all

    task['test_set_selected_length'] = len(selected_idx)
    task['test_set_selected_idx_ranges'] = selected_example_idx_ranges
    task['test_set_selected_idx_hash'] = hashlib.sha1(
        str(selected_idx).encode('utf-8')).hexdigest()
    task['accuracy_test_selected'] = accuracy_selected
    task['mean_confidence_test_selected'] = mean_conf_selected

    task_id = "%s_%d_%s_%s" % \
            (task['dataset_name'], task['test_set_selected_length'], task['test_set_selected_idx_hash'][:5],
             task['model_name'], )

    FLAGS.result_folder = os.path.join(FLAGS.result_folder, task_id)
    if not os.path.isdir(FLAGS.result_folder):
        os.makedirs(FLAGS.result_folder)

    from utils.output import save_task_descriptor
    save_task_descriptor(FLAGS.result_folder, [task])

    # 5. Generate adversarial examples.

    from utils.squeeze import reduce_precision_py
    from utils.parameter_parser import parse_params
    attack_string_hash = hashlib.sha1(
        FLAGS.attacks.encode('utf-8')).hexdigest()[:5]
    sample_string_hash = task['test_set_selected_idx_hash'][:5]

    from datasets.datasets_utils import get_next_class, get_least_likely_class
    Y_test_target_next = get_next_class(Y_test)
    Y_test_target_ll = get_least_likely_class(Y_pred)

    X_test_adv_list = []
    X_test_adv_discretized_list = []
    Y_test_adv_discretized_pred_list = []

    attack_string_list = filter(lambda x: len(x) > 0,
                                FLAGS.attacks.lower().split(';'))
    to_csv = []

    X_adv_cache_folder = os.path.join(FLAGS.result_folder, 'adv_examples')
    adv_log_folder = os.path.join(FLAGS.result_folder, 'adv_logs')
    predictions_folder = os.path.join(FLAGS.result_folder, 'predictions')
    for folder in [X_adv_cache_folder, adv_log_folder, predictions_folder]:
        if not os.path.isdir(folder):
            os.makedirs(folder)

    predictions_fpath = os.path.join(predictions_folder, "legitimate.npy")
    np.save(predictions_fpath, Y_pred, allow_pickle=False)

    if FLAGS.clip >= 0:
        epsilon = FLAGS.clip
        print("Clip the adversarial perturbations by +-%f" % epsilon)
        max_clip = np.clip(X_test + epsilon, 0, 1)
        min_clip = np.clip(X_test - epsilon, 0, 1)

    # NOTE : At the moment we only support single attacks and single detectors.
    for attack_string in attack_string_list:
        attack_name, attack_params = parse_params(attack_string)
        print("\nRunning attack: %s %s" % (attack_name, attack_params))

        if 'targeted' in attack_params:
            targeted = attack_params['targeted']
            print("targeted value: %s" % targeted)
            if targeted == 'next':
                Y_test_target = Y_test_target_next
            elif targeted == 'll':
                Y_test_target = Y_test_target_ll
            elif targeted == False:
                attack_params['targeted'] = False
                Y_test_target = Y_test.copy()
        else:
            targeted = False
            attack_params['targeted'] = False
            Y_test_target = Y_test.copy()

        # Note that we use the attack model here instead of the vanilla model
        # Note that we pass in the Squeezer function for BPDA
        X_test_adv = eot_adversarial_attack(sess, model_vanilla, models, x, y,
                                            x_s, X_test, Y_test_target,
                                            attack_params, squeezers)

        if FLAGS.clip > 0:
            # This is L-inf clipping.
            X_test_adv = np.clip(X_test_adv, min_clip, max_clip)

        X_test_adv_list.append(X_test_adv)

        # 5.0 Output predictions.
        Y_test_adv_pred = model_vanilla.predict(X_test_adv)
        predictions_fpath = os.path.join(predictions_folder,
                                         "%s.npy" % attack_string)
        np.save(predictions_fpath, Y_test_adv_pred, allow_pickle=False)

        # 5.1 Evaluate the adversarial examples being discretized to uint8.
        print("\n---Attack (uint8): %s" % attack_string)
        # All data should be discretized to uint8.
        X_test_adv_discret = reduce_precision_py(X_test_adv, 256)
        X_test_adv_discretized_list.append(X_test_adv_discret)
        Y_test_adv_discret_pred = model_vanilla.predict(X_test_adv_discret)
        Y_test_adv_discretized_pred_list.append(Y_test_adv_discret_pred)

        # Y_test_adv_discret_pred is for the vanilla model
        rec = evaluate_adversarial_examples(X_test, Y_test, X_test_adv_discret,
                                            Y_test_target.copy(), targeted,
                                            Y_test_adv_discret_pred)
        rec['dataset_name'] = FLAGS.dataset_name
        rec['model_name'] = FLAGS.model_name
        rec['attack_string'] = attack_string
        rec['discretization'] = True
        to_csv.append(rec)

    from utils.output import write_to_csv
    attacks_evaluation_csv_fpath = os.path.join(FLAGS.result_folder,
                                                "%s_attacks_%s_evaluation.csv" % \
                                                (task_id, attack_string_hash))
    fieldnames = [
        'dataset_name', 'model_name', 'attack_string', 'discretization',
        'success_rate', 'mean_confidence', 'mean_l2_dist', 'mean_li_dist',
        'mean_l0_dist_value', 'mean_l0_dist_pixel'
    ]
    write_to_csv(to_csv, attacks_evaluation_csv_fpath, fieldnames)

    if FLAGS.visualize is True:
        from datasets.visualization import show_imgs_in_rows
        if FLAGS.test_mode or FLAGS.balance_sampling:
            selected_idx_vis = range(Y_test.shape[1])
        else:
            selected_idx_vis = get_first_n_examples_id_each_class(Y_test, 1)

        legitimate_examples = X_test[selected_idx_vis]

        rows = [legitimate_examples]
        rows += map(lambda x: x[selected_idx_vis], X_test_adv_list)

        img_fpath = os.path.join(
            FLAGS.result_folder,
            '%s_attacks_%s_examples.png' % (task_id, attack_string_hash))
        #show_imgs_in_rows(rows, img_fpath)
        print('\n===Adversarial image examples are saved in ', img_fpath)

        # TODO: output the prediction and confidence for each example, both legitimate and adversarial.

    # 6. Evaluate robust classification techniques.
    # Example: --robustness \
    #           "Base;FeatureSqueezing?squeezer=bit_depth_1;FeatureSqueezing?squeezer=median_filter_2;"
    if FLAGS.robustness != '':
        """
        Test the accuracy with robust classifiers.
        Evaluate the accuracy on all the legitimate examples.
        """
        from robustness import evaluate_robustness
        result_folder_robustness = os.path.join(FLAGS.result_folder,
                                                "robustness")
        fname_prefix = "robustness_summary"
        evaluate_robustness(FLAGS.robustness, model_vanilla, Y_test_all, X_test_all, Y_test, \
                            attack_string_list, X_test_adv_discretized_list,
                            fname_prefix, selected_idx_vis, result_folder_robustness)

    # 7. Detection experiment.
    # Example: --detection "FeatureSqueezing?distance_measure=l1&squeezers=median_smoothing_2,bit_depth_4,bilateral_filter_15_15_60;"
    if FLAGS.detection != '':
        from detections.base import DetectionEvaluator

        result_folder_detection = os.path.join(FLAGS.result_folder,
                                               "detection")
        csv_fname = "detection_summary.csv"
        de = DetectionEvaluator(model_vanilla, result_folder_detection,
                                csv_fname, FLAGS.dataset_name)
        Y_test_all_pred = model_vanilla.predict(X_test_all)
        de.build_detection_dataset(X_test_all, Y_test_all, Y_test_all_pred,
                                   selected_idx, X_test_adv_discretized_list,
                                   Y_test_adv_discretized_pred_list,
                                   attack_string_list, attack_string_hash,
                                   FLAGS.clip, Y_test_target_next,
                                   Y_test_target_ll)
        de.evaluate_detections(FLAGS.detection)
def main(argv=None):
    # 0. Select a dataset.
    from datasets import MNISTDataset, CIFAR10Dataset, ImageNetDataset
    from datasets import get_correct_prediction_idx, evaluate_adversarial_examples, calculate_mean_confidence, calculate_accuracy, calculate_real_untargeted_mean_confidence

    if FLAGS.dataset_name == "MNIST":
        dataset = MNISTDataset()
    elif FLAGS.dataset_name == "CIFAR-10":
        dataset = CIFAR10Dataset()
    elif FLAGS.dataset_name == "ImageNet":
        dataset = ImageNetDataset()

    # 1. Load a dataset.
    print("\n===Loading %s data..." % FLAGS.dataset_name)
    if FLAGS.dataset_name == 'ImageNet':
        if FLAGS.model_name == 'inceptionv3':
            img_size = 299
        else:
            img_size = 224
        X_test_all, Y_test_all = dataset.get_test_data(img_size, 0, 200)
    else:
        X_test_all, Y_test_all = dataset.get_test_dataset()

    # 2. Load a trained model.
    sess = load_tf_session()
    #keras.backend.set_learning_phase(0)
    # Define input TF placeholder
    x = tf.placeholder(tf.float32,
                       shape=(None, dataset.image_size, dataset.image_size,
                              dataset.num_channels))
    y = tf.placeholder(tf.float32, shape=(None, dataset.num_classes))

    with tf.variable_scope(FLAGS.model_name):
        """
        Create a model instance for prediction.
        The scaling argument, 'input_range_type': {1: [0,1], 2:[-0.5, 0.5], 3:[-1, 1]...}
        """
        model = dataset.load_model_by_name(FLAGS.model_name,
                                           logits=False,
                                           input_range_type=1)
        model.compile(loss='categorical_crossentropy',
                      optimizer='sgd',
                      metrics=['acc'])

    # 3. Evaluate the trained model.
    # TODO: add top-5 accuracy for ImageNet.
    print("Evaluating the pre-trained model...")
    #X_test_all = scipy.ndimage.rotate(X_test_all, 5, reshape=False, axes=(2, 1))
    Y_pred_all = model.predict(X_test_all)
    mean_conf_all, _, _, _ = calculate_mean_confidence(Y_pred_all, Y_test_all)
    accuracy_all = calculate_accuracy(Y_pred_all, Y_test_all)
    print('Test accuracy on raw legitimate examples %.4f' % (accuracy_all))
    print('Mean confidence on ground truth classes %.4f' % (mean_conf_all))

    # 4. Select some examples to attack.
    import hashlib
    from datasets import get_first_n_examples_id_each_class

    if FLAGS.select:
        # Filter out the misclassified examples.
        correct_idx = get_correct_prediction_idx(Y_pred_all, Y_test_all)
        if FLAGS.test_mode:
            # Only select the first example of each class.
            correct_and_selected_idx = get_first_n_examples_id_each_class(
                Y_test_all[correct_idx])
            selected_idx = [correct_idx[i] for i in correct_and_selected_idx]
        else:
            if not FLAGS.balance_sampling:
                selected_idx = correct_idx[:FLAGS.nb_examples]
            else:
                # select the same number of examples for each class label.
                nb_examples_per_class = int(FLAGS.nb_examples /
                                            Y_test_all.shape[1])
                correct_and_selected_idx = get_first_n_examples_id_each_class(
                    Y_test_all[correct_idx], n=nb_examples_per_class)
                selected_idx = [
                    correct_idx[i] for i in correct_and_selected_idx
                ]
    else:
        selected_idx = np.array(range(FLAGS.nb_examples))

    from utils.output import format_number_range
    selected_example_idx_ranges = format_number_range(sorted(selected_idx))
    print("Selected %d examples." % len(selected_idx))
    print("Selected index in test set (sorted): %s" %
          selected_example_idx_ranges)
    X_test, Y_test, Y_pred = X_test_all[selected_idx], Y_test_all[
        selected_idx], Y_pred_all[selected_idx]

    # The accuracy should be 100%.
    accuracy_selected = calculate_accuracy(Y_pred, Y_test)
    mean_conf_selected, max_conf_selected, min_conf_selected, std_conf_selected = calculate_mean_confidence(
        Y_pred, Y_test)
    print('Test accuracy on selected legitimate examples %.4f' %
          (accuracy_selected))
    print('Mean confidence on ground truth classes, selected %.4f\n' %
          (mean_conf_selected))
    print('max confidence on ground truth classes, selected %.4f\n' %
          (max_conf_selected))
    print('min confidence on ground truth classes, selected %.4f\n' %
          (min_conf_selected))
    print('std confidence on ground truth classes, selected %.4f\n' %
          (std_conf_selected))

    task = {}
    task['dataset_name'] = FLAGS.dataset_name
    task['model_name'] = FLAGS.model_name
    task['accuracy_test'] = accuracy_all
    task['mean_confidence_test'] = mean_conf_all

    task['test_set_selected_length'] = len(selected_idx)
    task['test_set_selected_idx_ranges'] = selected_example_idx_ranges
    task['test_set_selected_idx_hash'] = hashlib.sha1(
        str(selected_idx).encode('utf-8')).hexdigest()
    task['accuracy_test_selected'] = accuracy_selected
    task['mean_confidence_test_selected'] = mean_conf_selected

    task_id = "%s_%d_%s_%s" % \
            (task['dataset_name'], task['test_set_selected_length'], task['test_set_selected_idx_hash'][:5], task['model_name'])

    FLAGS.result_folder = os.path.join(FLAGS.result_folder, task_id)
    if not os.path.isdir(FLAGS.result_folder):
        os.makedirs(FLAGS.result_folder)

    from utils.output import save_task_descriptor
    save_task_descriptor(FLAGS.result_folder, [task])

    # 5. Generate adversarial examples.
    from attacks import maybe_generate_adv_examples
    from utils.squeeze import reduce_precision_py
    from utils.parameter_parser import parse_params
    attack_string_hash = hashlib.sha1(
        FLAGS.attacks.encode('utf-8')).hexdigest()[:5]
    sample_string_hash = task['test_set_selected_idx_hash'][:5]

    from datasets.datasets_utils import get_next_class, get_least_likely_class, get_most_likely_class
    Y_test_target_next = get_next_class(Y_test)
    Y_test_target_ll = get_least_likely_class(Y_pred)
    Y_test_target_ml = get_most_likely_class(Y_pred)

    X_test_adv_list = []
    X_test_adv_discretized_list = []
    Y_test_adv_discretized_pred_list = []

    attack_string_list = filter(lambda x: len(x) > 0,
                                FLAGS.attacks.lower().split(';'))
    to_csv = []

    X_adv_cache_folder = os.path.join(FLAGS.result_folder, 'adv_examples')
    adv_log_folder = os.path.join(FLAGS.result_folder, 'adv_logs')
    predictions_folder = os.path.join(FLAGS.result_folder, 'predictions')
    for folder in [X_adv_cache_folder, adv_log_folder, predictions_folder]:
        if not os.path.isdir(folder):
            os.makedirs(folder)

    predictions_fpath = os.path.join(predictions_folder, "legitimate.npy")
    np.save(predictions_fpath, Y_pred, allow_pickle=False)

    if FLAGS.clip >= 0:
        epsilon = FLAGS.clip
        print("Clip the adversarial perturbations by +-%f" % epsilon)
        max_clip = np.clip(X_test + epsilon, 0, 1)
        min_clip = np.clip(X_test - epsilon, 0, 1)

    for attack_string in attack_string_list:
        attack_log_fpath = os.path.join(adv_log_folder,
                                        "%s_%s.log" % (task_id, attack_string))
        attack_name, attack_params = parse_params(attack_string)
        print("\nRunning attack: %s %s" % (attack_name, attack_params))

        if 'targeted' in attack_params:
            targeted = attack_params['targeted']
            print("targeted value: %s" % targeted)
            if targeted == 'next':
                Y_test_target = Y_test_target_next
                #Y_test_target = Y_test.copy()
            elif targeted == 'll':
                Y_test_target = Y_test_target_ll
                #Y_test_target = Y_test.copy()
                #print (Y_test_target_ll)
            elif targeted == 'most':
                Y_test_target = Y_test_target_ml
                #Y_test_target = Y_test.copy()
                #print (Y_test_target_ml)
            elif targeted == False:
                attack_params['targeted'] = False
                Y_test_target = Y_test.copy()
        else:
            targeted = False
            attack_params['targeted'] = False
            Y_test_target = Y_test.copy()
            Y_test_target_all = Y_test_all.copy()

        x_adv_fname = "%s_%s.pickle" % (task_id, attack_string)
        x_adv_fpath = os.path.join(X_adv_cache_folder, x_adv_fname)

        X_test_adv, aux_info = maybe_generate_adv_examples(
            sess,
            model,
            x,
            y,
            X_test,
            Y_test_target,
            attack_name,
            attack_params,
            use_cache=x_adv_fpath,
            verbose=FLAGS.verbose,
            attack_log_fpath=attack_log_fpath)

        if FLAGS.clip > 0:
            # This is L-inf clipping.
            X_test_adv = np.clip(X_test_adv, min_clip, max_clip)

        X_test_adv_list.append(X_test_adv)

        if isinstance(aux_info, float):
            duration = aux_info
        else:
            duration = aux_info['duration']

        dur_per_sample = duration / len(X_test_adv)

        # 5.0 Output predictions.
        Y_test_adv_pred = model.predict(X_test_adv)
        #predictions_fpath = os.path.join(predictions_folder, "%s.npy"% attack_string)
        #np.save(predictions_fpath, Y_test_adv_pred, allow_pickle=False)

        # 5.1 Evaluate the adversarial examples being discretized to uint8.
        print("\n---Attack (uint8): %s" % attack_string)
        #import utils.squeeze as squeezer

        # All data should be discretized to uint8.
        X_test_adv_discret = reduce_precision_py(X_test_adv, 256)
        #X_test_adv_discret = reduce_precision_py(X_test_adv, 2)
        X_test_adv_discretized_list.append(X_test_adv_discret)

        Y_test_adv_discret_pred = model.predict(X_test_adv_discret)
        #Y_test_adv_discret_pred1 = to_categorical(np.argmax(model1.predict(X_test_adv_discret), axis=1))

        from LID.extract_artifacts_obfus import get_lid
        from LID.util_obfus import get_noisy_samples, random_split, block_split, train_lr, compute_roc
        from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
        from sklearn.preprocessing import scale, MinMaxScaler, StandardScaler

        #from LID.extract_artifact import *
        #from LID_util import *

        X_test_noisy = get_noisy_samples(X_test, X_test_adv, 'mnist', 'fgsm')

        artifacts, labels = get_lid(model, X_test, X_test_noisy,
                                    X_test_adv_discret, 20, 100, 'mnist')

        #X=artifacts
        #Y=labels

        print(X_test_noisy.shape)
        #print (artifacts.shape)

        # standarization
        scaler = MinMaxScaler().fit(artifacts)
        artifacts = scaler.transform(artifacts)
        # X = scale(X) # Z-norm

        # test attack is the same as training attack
        X_train_lid, Y_train_lid, X_test_lid, Y_test_lid = block_split(
            artifacts, labels)

        ## Build detector
        # print("LR Detector on [dataset: %s, train_attack: %s, test_attack: %s] with:" %
        #       (args.dataset, args.attack, args.test_attack))
        lr = train_lr(X_train_lid, Y_train_lid)

        ## Evaluate detector
        y_pred_lid = lr.predict_proba(X_test_lid)[:, 1]
        y_label_pred = lr.predict(X_test_lid)

        Y_test_lid = np.reshape(Y_test_lid, Y_test_lid.shape[0])

        # AUC
        _, _, auc_score = compute_roc(Y_test_lid[:100],
                                      y_pred_lid[:100],
                                      plot=False)
        precision = precision_score(Y_test_lid[:100], y_label_pred[:100])
        recall = recall_score(Y_test_lid[:100], y_label_pred[:100])

        y_label_pred = lr.predict(X_test_lid[:100])
        acc = accuracy_score(Y_test_lid[:100], y_label_pred[:100])
        print('start measuring LID')
        print(
            'Detector ROC-AUC score: %0.4f, accuracy: %.4f, precision: %.4f, recall(TPR): %.4f'
            % (auc_score, acc, precision, recall))

        from detections.base import evalulate_detection_test

        a, b, c, d, e = evalulate_detection_test(Y_test_lid[:100],
                                                 y_label_pred[:100])
        f1 = f1_score(Y_test_lid[:100], y_label_pred)

        print(
            'SAE_acc: %0.4f, tpr: %.4f, fpr: %.4f, fdr (1- precision): %.4f, fbr (official name false omission rate): %.4f, f1 score: %.4f'
            % (a, b, c, d, e, f1))
        print('end measuring LID')

    from utils.output import write_to_csv
    attacks_evaluation_csv_fpath = os.path.join(FLAGS.result_folder,
            "%s_attacks_%s_evaluation.csv" % \
            (task_id, attack_string_hash))
    fieldnames = [
        'dataset_name', 'model_name', 'attack_string', 'duration_per_sample',
        'discretization', 'success_rate', 'mean_confidence', 'mean_l2_dist',
        'mean_li_dist', 'mean_l0_dist_value', 'mean_l0_dist_pixel'
    ]
    write_to_csv(to_csv, attacks_evaluation_csv_fpath, fieldnames)

    # 7. Detection experiment.
    # Example: --detection "FeatureSqueezing?distance_measure=l1&squeezers=median_smoothing_2,bit_depth_4,bilateral_filter_15_15_60;"
    if FLAGS.detection != '':
        from detections.base import DetectionEvaluator

        result_folder_detection = os.path.join(FLAGS.result_folder,
                                               "detection")
        csv_fname = "%s_attacks_%s_detection.csv" % (task_id,
                                                     attack_string_hash)
        de = DetectionEvaluator(model, result_folder_detection, csv_fname,
                                FLAGS.dataset_name)
        Y_test_all_pred = model.predict(X_test_all)
        de.build_detection_dataset(X_test_all, Y_test_all, Y_test_all_pred,
                                   selected_idx, X_test_adv_discretized_list,
                                   Y_test_adv_discretized_pred_list,
                                   attack_string_list, attack_string_hash,
                                   FLAGS.clip, Y_test_target_most,
                                   Y_test_target_ll)
        de.evaluate_detections(FLAGS.detection)
Exemple #8
0
    def evaluate_detections(self, params_str):
        X_train, Y_train, X_test, Y_test = self.get_training_testing_data()

        # Example: --detection "FeatureSqueezing?distance_measure=l1&squeezers=median_smoothing_2,bit_depth_4;"
        detector_names = [
            ele.strip() for ele in params_str.split(';') if ele.strip() != ''
        ]

        dataset_name = self.dataset_name
        csv_fpath = "./detection_%s_saes.csv" % dataset_name
        fieldnames = ['detector', 'threshold', 'fpr'
                      ] + self.attack_names + ['overall']
        to_csv = []

        for detector_name in detector_names:
            detector = self.get_detector_by_name(detector_name)
            if detector is None:
                print("Skipped an unknown detector [%s]" %
                      detector_name.split('?')[0])
                continue
            detector.train(X_train, Y_train)
            Y_test_pred, Y_test_pred_score = detector.test(X_test)

            accuracy, tpr, fpr, tp, ap = evalulate_detection_test(
                Y_test, Y_test_pred)
            fprs, tprs, thresholds = roc_curve(Y_test, Y_test_pred_score)
            roc_auc = auc(fprs, tprs)

            print("Detector: %s" % detector_name)
            print("Accuracy: %f\tTPR: %f\tFPR: %f\tROC-AUC: %f" %
                  (accuracy, tpr, fpr, roc_auc))

            rec = {}
            rec['detector'] = detector_name
            if hasattr(detector, 'threshold'):
                rec['threshold'] = detector.threshold
            else:
                rec['threshold'] = None
            rec['fpr'] = fpr
            overall_detection_rate_saes = 0
            nb_saes = 0
            for attack_name in self.attack_names:
                # No adversarial examples for training for the current detection methods.
                # X_sae, Y_sae = self.get_sae_testing_data(attack_name)
                if tf.flags.FLAGS.detection_train_test_mode:
                    X_sae, Y_sae = self.get_sae_testing_data(attack_name)
                else:
                    X_sae, Y_sae = self.get_sae_data(attack_name)
                Y_test_pred, Y_test_pred_score = detector.test(X_sae)
                _, tpr, _, tp, ap = evalulate_detection_test(
                    Y_sae, Y_test_pred)
                undetected_idx = np.where(Y_test_pred == False)[0]
                print("%d undetected images" % len(undetected_idx))
                if len(undetected_idx):
                    from datasets.visualization import show_imgs_in_rows
                    undetected_X = [X_sae[undetected_idx]]
                    img_fpath = os.path.join(
                        tf.flags.FLAGS.result_folder,
                        'undetected_attacks__%s__%s.png' %
                        (detector_name, attack_name))
                    show_imgs_in_rows(undetected_X, img_fpath)
                    print("%d new undetected images saved for attack %s: %s" %
                          (len(undetected_X), attack_name, img_fpath))

                print("Detection rate on SAEs: %.4f \t %3d/%3d \t %s" %
                      (tpr, tp, ap, attack_name))
                overall_detection_rate_saes += tpr * len(Y_sae)
                nb_saes += len(Y_sae)
                rec[attack_name] = tpr
                # print ("overall_detection_rate_saes/nb_saes: %d/%d" % (overall_detection_rate_saes, nb_saes))

            print("Overall detection rate on SAEs: %f (%d/%d)" %
                  (overall_detection_rate_saes / nb_saes,
                   overall_detection_rate_saes, nb_saes))
            rec['overall'] = float(overall_detection_rate_saes / nb_saes)
            to_csv.append(rec)

            # No adversarial examples for training for the current detection methods.
            # X_sae_all, Y_sae_all = self.get_sae_testing_data()
            print("### Excluding FAEs:")
            if tf.flags.FLAGS.detection_train_test_mode:
                X_nfae_all, Y_nfae_all = self.get_all_non_fae_testing_data()
            else:
                X_nfae_all, Y_nfae_all = self.get_all_non_fae_data()
            Y_pred, Y_pred_score = detector.test(X_nfae_all)
            _, tpr, _, tp, ap = evalulate_detection_test(Y_nfae_all, Y_pred)
            fprs, tprs, thresholds = roc_curve(Y_nfae_all, Y_pred_score)

            # print ("threshold\tfpr\ttpr")
            # for i, threshold  in enumerate(thresholds):
            #     print ("%.4f\t%.4f\t%.4f" % (threshold, fprs[i], tprs[i]))

            roc_auc = auc(fprs, tprs)
            print("Overall TPR: %f\tROC-AUC: %f" % (tpr, roc_auc))

            # FAEs
            if tf.flags.FLAGS.detection_train_test_mode:
                X_fae, Y_fae = self.get_fae_testing_data()
            else:
                X_fae, Y_fae = self.get_fae_data()
            Y_test_pred, Y_test_pred_score = detector.test(X_fae)
            _, tpr, _, tp, ap = evalulate_detection_test(Y_fae, Y_test_pred)
            print("Overall detection rate on FAEs: %.4f \t %3d/%3d" %
                  (tpr, tp, ap))

        write_to_csv(to_csv, csv_fpath, fieldnames)
Exemple #9
0
def main(dataset_name=None,
         model_name=None,
         attacks=None,
         nb_examples=None,
         detection=None,
         show_help=False):
    # 0. Select a dataset.
    if show_help:
        print(tf.flags.FLAGS.__dict__)
        print(
            "Some of the above operations are available via this function, namely: dataset_name, model_name, attacks, nb_examples and detetction. If you need more of these options, please install the parent repository and use it as a command line program.\n"
        )
        return

    from datasets import MNISTDataset, CIFAR10Dataset, ImageNetDataset, SVHNDataset
    from datasets import get_correct_prediction_idx, evaluate_adversarial_examples, calculate_mean_confidence, calculate_accuracy
    from datasets.visualization import show_imgs_in_rows
    if dataset_name is not None:
        tf.flags.FLAGS.dataset_name = dataset_name
    if attacks is not None:
        tf.flags.FLAGS.attacks = attacks
    if nb_examples is not None:
        tf.flags.FLAGS.nb_examples = nb_examples
    if detection is not None:
        tf.flags.FLAGS.detection = detection
    if model_name is not None:
        tf.flags.FLAGS.model_name = model_name.lower()
    else:
        tf.flags.FLAGS.model_name = FLAGS.model_name.lower()

    if tf.flags.FLAGS.dataset_name == "MNIST":
        dataset = MNISTDataset()
    elif tf.flags.FLAGS.dataset_name == "CIFAR-10":
        dataset = CIFAR10Dataset()
    elif tf.flags.FLAGS.dataset_name == "ImageNet":
        dataset = ImageNetDataset()
    elif tf.flags.FLAGS.dataset_name == "SVHN":
        dataset = SVHNDataset()

    print("Flags are %s" % tf.flags.FLAGS.__flags)

    # 1. Load a dataset.
    print("\n===Loading %s data..." % tf.flags.FLAGS.dataset_name)
    if tf.flags.FLAGS.dataset_name == 'ImageNet':
        if tf.flags.FLAGS.model_name == 'inceptionv3':
            img_size = 299
        else:
            img_size = 224
        X_test_all, Y_test_all = dataset.get_test_data(img_size, 0, 200)
    else:
        X_test_all, Y_test_all = dataset.get_test_dataset()

    # 2. Load a trained model.
    sess = load_tf_session()
    keras.backend.set_learning_phase(0)
    # Define input TF placeholder
    x = tf.placeholder(tf.float32,
                       shape=(None, dataset.image_size, dataset.image_size,
                              dataset.num_channels))
    y = tf.placeholder(tf.float32, shape=(None, dataset.num_classes))

    with tf.variable_scope(tf.flags.FLAGS.model_name):
        """
        Create a model instance for prediction.
        The scaling argument, 'input_range_type': {1: [0,1], 2:[-0.5, 0.5], 3:[-1, 1]...}
        """
        model = dataset.load_model_by_name(tf.flags.FLAGS.model_name,
                                           logits=False,
                                           input_range_type=1)
        model.compile(loss='categorical_crossentropy',
                      optimizer='sgd',
                      metrics=['acc'])

    print(type(model))
    # 3. Evaluate the trained model.
    # TODO: add top-5 accuracy for ImageNet.
    print("Evaluating the pre-trained model...")
    Y_pred_all = model.predict(X_test_all)
    mean_conf_all = calculate_mean_confidence(Y_pred_all, Y_test_all)
    accuracy_all = calculate_accuracy(Y_pred_all, Y_test_all)
    print('Test accuracy on raw legitimate examples %.4f' % (accuracy_all))
    print('Mean confidence on ground truth classes %.4f' % (mean_conf_all))

    # 4. Select some examples to attack.
    import hashlib
    from datasets import get_first_n_examples_id_each_class

    if tf.flags.FLAGS.select:
        # Filter out the misclassified examples.
        correct_idx = get_correct_prediction_idx(Y_pred_all, Y_test_all)
        if tf.flags.FLAGS.test_mode:
            # Only select the first example of each class.
            correct_and_selected_idx = get_first_n_examples_id_each_class(
                Y_test_all[correct_idx])
            selected_idx = [correct_idx[i] for i in correct_and_selected_idx]
        else:
            if not tf.flags.FLAGS.balance_sampling:
                selected_idx = correct_idx[:tf.flags.FLAGS.nb_examples]
            else:
                # select the same number of examples for each class label.
                nb_examples_per_class = int(tf.flags.FLAGS.nb_examples /
                                            Y_test_all.shape[1])
                correct_and_selected_idx = get_first_n_examples_id_each_class(
                    Y_test_all[correct_idx], n=nb_examples_per_class)
                selected_idx = [
                    correct_idx[i] for i in correct_and_selected_idx
                ]
    else:
        selected_idx = np.array(range(tf.flags.FLAGS.nb_examples))

    from utils.output import format_number_range
    selected_example_idx_ranges = format_number_range(sorted(selected_idx))
    print("Selected %d examples." % len(selected_idx))
    print("Selected index in test set (sorted): %s" %
          selected_example_idx_ranges)
    X_test, Y_test, Y_pred = X_test_all[selected_idx], Y_test_all[
        selected_idx], Y_pred_all[selected_idx]

    # The accuracy should be 100%.
    accuracy_selected = calculate_accuracy(Y_pred, Y_test)
    mean_conf_selected = calculate_mean_confidence(Y_pred, Y_test)
    print('Test accuracy on selected legitimate examples %.4f' %
          (accuracy_selected))
    print('Mean confidence on ground truth classes, selected %.4f\n' %
          (mean_conf_selected))

    task = {}
    task['dataset_name'] = tf.flags.FLAGS.dataset_name
    task['model_name'] = tf.flags.FLAGS.model_name
    task['accuracy_test'] = accuracy_all
    task['mean_confidence_test'] = mean_conf_all

    task['test_set_selected_length'] = len(selected_idx)
    task['test_set_selected_idx_ranges'] = selected_example_idx_ranges
    task['test_set_selected_idx_hash'] = hashlib.sha1(
        str(selected_idx).encode('utf-8')).hexdigest()
    task['accuracy_test_selected'] = accuracy_selected
    task['mean_confidence_test_selected'] = mean_conf_selected

    task_id = "%s_%d_%s_%s" % \
            (task['dataset_name'], task['test_set_selected_length'], task['test_set_selected_idx_hash'][:5], task['model_name'])

    if task_id not in tf.flags.FLAGS.result_folder:
        tf.flags.FLAGS.result_folder = os.path.join(
            tf.flags.FLAGS.result_folder, task_id)
    if not os.path.isdir(tf.flags.FLAGS.result_folder):
        os.makedirs(tf.flags.FLAGS.result_folder)

    from utils.output import save_task_descriptor
    save_task_descriptor(tf.flags.FLAGS.result_folder, [task])

    # 5. Generate adversarial examples.
    from attacks import maybe_generate_adv_examples
    from utils.squeeze import reduce_precision_py
    from utils.parameter_parser import parse_params
    attack_string_hash = hashlib.sha1(
        tf.flags.FLAGS.attacks.encode('utf-8')).hexdigest()[:5]
    sample_string_hash = task['test_set_selected_idx_hash'][:5]

    from datasets.datasets_utils import get_next_class, get_least_likely_class
    Y_test_target_next = get_next_class(Y_test)
    Y_test_target_ll = get_least_likely_class(Y_pred)

    X_test_adv_list = []
    X_test_adv_discretized_list = []
    Y_test_adv_discretized_pred_list = []

    attack_string_list = list(
        filter(lambda x: len(x) > 0,
               tf.flags.FLAGS.attacks.lower().split(';')))
    to_csv = []

    X_adv_cache_folder = os.path.join(tf.flags.FLAGS.result_folder,
                                      'adv_examples')
    adv_log_folder = os.path.join(tf.flags.FLAGS.result_folder, 'adv_logs')
    predictions_folder = os.path.join(tf.flags.FLAGS.result_folder,
                                      'predictions')
    for folder in [X_adv_cache_folder, adv_log_folder, predictions_folder]:
        if not os.path.isdir(folder):
            os.makedirs(folder)

    predictions_fpath = os.path.join(predictions_folder, "legitimate.npy")
    np.save(predictions_fpath, Y_pred, allow_pickle=False)

    if tf.flags.FLAGS.clip >= 0:
        epsilon = tf.flags.FLAGS.clip
        print("Clip the adversarial perturbations by +-%f" % epsilon)
        max_clip = np.clip(X_test + epsilon, 0, 1)
        min_clip = np.clip(X_test - epsilon, 0, 1)

    for attack_string in attack_string_list:
        attack_log_fpath = os.path.join(adv_log_folder,
                                        "%s_%s.log" % (task_id, attack_string))
        attack_name, attack_params = parse_params(attack_string)
        print("\nRunning attack: %s %s" % (attack_name, attack_params))

        if 'targeted' in attack_params:
            targeted = attack_params['targeted']
            print("targeted value: %s" % targeted)
            if targeted == 'next':
                Y_test_target = Y_test_target_next
            elif targeted == 'll':
                Y_test_target = Y_test_target_ll
            elif targeted == False:
                attack_params['targeted'] = False
                Y_test_target = Y_test.copy()
        else:
            targeted = False
            attack_params['targeted'] = False
            Y_test_target = Y_test.copy()

        x_adv_fname = "%s_%s.pickle" % (task_id, attack_string)
        x_adv_fpath = os.path.join(X_adv_cache_folder, x_adv_fname)

        X_test_adv, aux_info = maybe_generate_adv_examples(
            sess,
            model,
            x,
            y,
            X_test,
            Y_test_target,
            attack_name,
            attack_params,
            use_cache=x_adv_fpath,
            verbose=tf.flags.FLAGS.verbose,
            attack_log_fpath=attack_log_fpath)

        if tf.flags.FLAGS.clip > 0:
            # This is L-inf clipping.
            X_test_adv = np.clip(X_test_adv, min_clip, max_clip)

        X_test_adv_list.append(X_test_adv)

        if isinstance(aux_info, float):
            duration = aux_info
        else:
            duration = aux_info['duration']

        dur_per_sample = duration / len(X_test_adv)

        # 5.0 Output predictions.
        Y_test_adv_pred = model.predict(X_test_adv)
        predictions_fpath = os.path.join(predictions_folder,
                                         "%s.npy" % attack_string)
        np.save(predictions_fpath, Y_test_adv_pred, allow_pickle=False)

        # 5.1 Evaluate the adversarial examples being discretized to uint8.
        print("\n---Attack (uint8): %s" % attack_string)
        # All data should be discretized to uint8.
        X_test_adv_discret = reduce_precision_py(X_test_adv, 256)
        X_test_adv_discretized_list.append(X_test_adv_discret)
        Y_test_adv_discret_pred = model.predict(X_test_adv_discret)
        Y_test_adv_discretized_pred_list.append(Y_test_adv_discret_pred)

        rec = evaluate_adversarial_examples(X_test, Y_test, X_test_adv_discret,
                                            Y_test_target.copy(), targeted,
                                            Y_test_adv_discret_pred)
        rec['dataset_name'] = tf.flags.FLAGS.dataset_name
        rec['model_name'] = tf.flags.FLAGS.model_name
        rec['attack_string'] = attack_string
        rec['duration_per_sample'] = dur_per_sample
        rec['discretization'] = True
        to_csv.append(rec)

    from utils.output import write_to_csv
    attacks_evaluation_csv_fpath = os.path.join(tf.flags.FLAGS.result_folder,
            "%s_attacks_%s_evaluation.csv" % \
            (task_id, attack_string_hash))
    fieldnames = [
        'dataset_name', 'model_name', 'attack_string', 'duration_per_sample',
        'discretization', 'success_rate', 'mean_confidence', 'mean_l2_dist',
        'mean_li_dist', 'mean_l0_dist_value', 'mean_l0_dist_pixel'
    ]
    write_to_csv(to_csv, attacks_evaluation_csv_fpath, fieldnames)

    if tf.flags.FLAGS.visualize is True:
        if tf.flags.FLAGS.test_mode or tf.flags.FLAGS.balance_sampling:
            selected_idx_vis = range(Y_test.shape[1])
        else:
            selected_idx_vis = get_first_n_examples_id_each_class(Y_test, 1)

        legitimate_examples = X_test[selected_idx_vis]

        rows = [legitimate_examples]
        rows += map(lambda x: x[selected_idx_vis], X_test_adv_list)

        img_fpath = os.path.join(
            tf.flags.FLAGS.result_folder,
            '%s_attacks_%s_examples.png' % (task_id, attack_string_hash))
        show_imgs_in_rows(rows, img_fpath)

        print('\n===Adversarial image examples are saved in ', img_fpath)

        # TODO: output the prediction and confidence for each example, both legitimate and adversarial.

    # 6. Evaluate robust classification techniques.
    # Example: --robustness \
    #           "Base;FeatureSqueezing?squeezer=bit_depth_1;FeatureSqueezing?squeezer=median_filter_2;"
    if tf.flags.FLAGS.robustness != '':
        """
        Test the accuracy with robust classifiers.
        Evaluate the accuracy on all the legitimate examples.
        """
        from robustness import evaluate_robustness
        result_folder_robustness = os.path.join(tf.flags.FLAGS.result_folder,
                                                "robustness")
        fname_prefix = "%s_%s_robustness" % (task_id, attack_string_hash)
        evaluate_robustness(tf.flags.FLAGS.robustness, model, Y_test_all, X_test_all, Y_test, \
                attack_string_list, X_test_adv_discretized_list,
                fname_prefix, selected_idx_vis, result_folder_robustness)

    # 7. Detection experiment.
    # Example: --detection "FeatureSqueezing?distance_measure=l1&squeezers=median_smoothing_2,bit_depth_4,bilateral_filter_15_15_60;"
    if tf.flags.FLAGS.detection != '':
        from detections.base import DetectionEvaluator

        result_folder_detection = os.path.join(tf.flags.FLAGS.result_folder,
                                               "detection")
        csv_fname = "%s_attacks_%s_detection.csv" % (task_id,
                                                     attack_string_hash)
        de = DetectionEvaluator(model, result_folder_detection, csv_fname,
                                tf.flags.FLAGS.dataset_name)
        Y_test_all_pred = model.predict(X_test_all)
        de.build_detection_dataset(X_test_all, Y_test_all, Y_test_all_pred,
                                   selected_idx, X_test_adv_discretized_list,
                                   Y_test_adv_discretized_pred_list,
                                   attack_string_list, attack_string_hash,
                                   tf.flags.FLAGS.clip, Y_test_target_next,
                                   Y_test_target_ll)
        de.evaluate_detections(tf.flags.FLAGS.detection)
Exemple #10
0
def main(argv=None):
    # 0. Select a dataset.
    from datasets import MNISTDataset, CIFAR10Dataset, ImageNetDataset, LFWDataset
    from datasets import get_correct_prediction_idx, evaluate_adversarial_examples2, calculate_mean_confidence, calculate_accuracy
    from utils.parameter_parser import parse_params

    if FLAGS.dataset_name == "MNIST":
        dataset = MNISTDataset()
    elif FLAGS.dataset_name == "CIFAR-10":
        dataset = CIFAR10Dataset()
    elif FLAGS.dataset_name == "ImageNet":
        dataset = ImageNetDataset()
    elif FLAGS.dataset_name == "LFW":
        dataset = LFWDataset()

    # 1. Load a dataset.
    print("\n===Loading %s data..." % FLAGS.dataset_name)
    if FLAGS.dataset_name == 'ImageNet':
        if FLAGS.model_name == 'inceptionv3':
            img_size = 299
        else:
            img_size = 224
        X_test_all, Y_test_all = dataset.get_test_data(img_size, 0, 200)
    else:
        X_test_all, Y_test_all = dataset.get_test_dataset()
    #z = np.where(Y_test_all == np.asarray([1, 0, 0, 0, 0, 0, 0, 0, 0, 0]))

    #LABEL SELECTION
    label = np.asarray([0] * Y_test_all.shape[1])
    label[FLAGS.label_index] = 1
    filter_indices = []
    for i in range(len(Y_test_all)):
        if np.array_equal(Y_test_all[i], label):
            filter_indices.append(i)
    print(X_test_all.shape, Y_test_all.shape)
    X_test_all = np.take(X_test_all, filter_indices, 0)
    Y_test_all = np.take(Y_test_all, filter_indices, 0)
    print(X_test_all.shape, Y_test_all.shape)

    # 2. Load a trained model.
    sess = load_tf_session()
    keras.backend.set_learning_phase(0)
    # Define input TF placeholder
    x = tf.placeholder(tf.float32, shape=(None, dataset.image_size, dataset.image_size, dataset.num_channels))
    y = tf.placeholder(tf.float32, shape=(None, dataset.num_classes))

    with tf.variable_scope(FLAGS.model_name):
        """
        Create a model instance for prediction.
        The scaling argument, 'input_range_type': {1: [0,1], 2:[-0.5, 0.5], 3:[-1, 1]...}
        """
        model = dataset.load_model_by_name(FLAGS.model_name, logits=False, input_range_type=1)
        model.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['acc'])

    # 3. Evaluate the trained model.
    # TODO: add top-5 accuracy for ImageNet.
    print("Evaluating the pre-trained model...")
    Y_pred_all = model.predict(X_test_all)
    mean_conf_all = calculate_mean_confidence(Y_pred_all, Y_test_all)
    accuracy_all = calculate_accuracy(Y_pred_all, Y_test_all)
    print('Test accuracy on raw legitimate examples %.4f' % (accuracy_all))
    print('Mean confidence on ground truth classes %.4f' % (mean_conf_all))

    # 4. Select some examples to attack.
    import hashlib
    from datasets import get_first_n_examples_id_each_class

    if FLAGS.select:
        # Filter out the misclassified examples.
        correct_idx = get_correct_prediction_idx(Y_pred_all, Y_test_all)
        if FLAGS.test_mode:
            # Only select the first example of each class.
            correct_and_selected_idx = get_first_n_examples_id_each_class(Y_test_all[correct_idx])
            selected_idx = [correct_idx[i] for i in correct_and_selected_idx]
        else:
            if not FLAGS.balance_sampling:
                # TODO: Possibly randomize this
                if FLAGS.random_image != 0:
                    np.random.seed(FLAGS.random_image)
                    print("RANDOM NUMBER")
                    print(np.random.randint(100))
                    np.random.shuffle(correct_idx)
                selected_idx = correct_idx[:FLAGS.nb_examples]
            else:
                # select the same number of examples for each class label.
                nb_examples_per_class = int(FLAGS.nb_examples / Y_test_all.shape[1])
                correct_and_selected_idx = get_first_n_examples_id_each_class(Y_test_all[correct_idx], n=nb_examples_per_class)
                selected_idx = [correct_idx[i] for i in correct_and_selected_idx]
    else:
        selected_idx = np.array(range(FLAGS.nb_examples))

    from utils.output import format_number_range
    selected_example_idx_ranges = format_number_range(sorted(selected_idx))
    print("Selected %d examples." % len(selected_idx))
    print("Selected index in test set (sorted): %s" % selected_example_idx_ranges)
    X_test, Y_test, Y_pred = X_test_all[selected_idx], Y_test_all[selected_idx], Y_pred_all[selected_idx]

    # The accuracy should be 100%.
    accuracy_selected = calculate_accuracy(Y_pred, Y_test)
    mean_conf_selected = calculate_mean_confidence(Y_pred, Y_test)
    print('Test accuracy on selected legitimate examples %.4f' % (accuracy_selected))
    print('Mean confidence on ground truth classes, selected %.4f\n' % (mean_conf_selected))

    task = {}
    task['dataset_name'] = FLAGS.dataset_name
    task['model_name'] = FLAGS.model_name
    task['accuracy_test'] = accuracy_all
    task['mean_confidence_test'] = mean_conf_all

    task['test_set_selected_length'] = len(selected_idx)
    task['test_set_selected_idx_ranges'] = selected_example_idx_ranges
    task['test_set_selected_idx_hash'] = hashlib.sha1(str(selected_idx).encode('utf-8')).hexdigest()
    task['accuracy_test_selected'] = accuracy_selected
    task['mean_confidence_test_selected'] = mean_conf_selected

    #task_id = "%s_%d_%s_%s" % \
     #   (task['dataset_name'], task['test_set_selected_length'], task['test_set_selected_idx_hash'][:5], task['model_name'])

    task_id = "%s_%s" % \
           (task['dataset_name'], task['model_name'])

    FLAGS.result_folder = os.path.join(FLAGS.result_folder, task_id)
    if os.path.exists(FLAGS.result_folder):
        print("RESULTS FOLDER")
        print(FLAGS.result_folder)
        shutil.rmtree(FLAGS.result_folder)
    if not os.path.isdir(FLAGS.result_folder):
        os.makedirs(FLAGS.result_folder)

    from utils.output import save_task_descriptor2
    save_task_descriptor2(FLAGS.result_folder, [task])

    # 5. Generate adversarial examples.
    from attacks import maybe_generate_adv_examples
    from utils.squeeze import reduce_precision_py

    #attack_string_hash = hashlib.sha1(FLAGS.attacks.encode('utf-8')).hexdigest()[:5]
    attack_string_hash = FLAGS.attacks.encode('utf-8')

    from datasets.datasets_utils import get_next_class, get_most_likely_class, get_least_likely_class
    Y_test_target_next = get_next_class(Y_test)
    Y_test_target_most = get_most_likely_class(Y_test)
    Y_test_target_ll = get_least_likely_class(Y_pred)

    X_test_adv_list = []
    X_test_adv_discretized_list = []
    Y_test_adv_discretized_pred_list = []

    attack_string_list = filter(lambda x: len(x) > 0, FLAGS.attacks.lower().split(';'))
    to_csv = []

    X_adv_cache_folder = os.path.join(FLAGS.result_folder, 'adv_examples')
    adv_log_folder = os.path.join(FLAGS.result_folder, 'adv_logs')
    predictions_folder = os.path.join(FLAGS.result_folder, 'predictions')
    for folder in [X_adv_cache_folder, adv_log_folder, predictions_folder]:
        if os.path.isdir(folder):
            #os.rmdir(folder)
            shutil.rmtree(folder)
    for folder in [X_adv_cache_folder, adv_log_folder, predictions_folder]:
        if not os.path.isdir(folder):
            os.makedirs(folder)

    predictions_fpath = os.path.join(predictions_folder, "legitimate.npy")
    np.save(predictions_fpath, Y_pred, allow_pickle=False)

    if FLAGS.clip >= 0:
        epsilon = FLAGS.clip
        print("Clip the adversarial perturbations by +-%f" % epsilon)
        max_clip = np.clip(X_test + epsilon, 0, 1)
        min_clip = np.clip(X_test - epsilon, 0, 1)

    for attack_string in attack_string_list:
        attack_log_fpath = os.path.join(adv_log_folder, "%s_%s.log" % (task_id, attack_string))
        attack_name, attack_params = parse_params(attack_string)
        print("\nRunning attack: %s %s" % (attack_name, attack_params))

        if 'targeted' in attack_params:
            targeted = attack_params['targeted']
            print("targeted value: %s" % targeted)
            if targeted == 'next':
                Y_test_target = Y_test_target_next
            elif targeted == 'most':
                Y_test_target = Y_test_target_most
            elif targeted == 'll':
                Y_test_target = Y_test_target_ll
            elif targeted is False:
                attack_params['targeted'] = False
                Y_test_target = Y_test.copy()
        else:
            targeted = False
            attack_params['targeted'] = False
            Y_test_target = Y_test.copy()

        x_adv_fname = "%s_%s.pickle" % (task_id, attack_string)
        x_adv_fpath = os.path.join(X_adv_cache_folder, x_adv_fname)

        X_test_adv, aux_info = maybe_generate_adv_examples(sess, model, x, y, X_test, Y_test_target, attack_name, attack_params, use_cache=x_adv_fpath, verbose=FLAGS.verbose, attack_log_fpath=attack_log_fpath)

        if FLAGS.clip > 0:
            # This is L-inf clipping.
            X_test_adv = np.clip(X_test_adv, min_clip, max_clip)

        X_test_adv_list.append(X_test_adv)

        if isinstance(aux_info, float):
            duration = aux_info
        else:
            duration = aux_info['duration']

        dur_per_sample = duration / len(X_test_adv)

        # 5.0 Output predictions.
        # Y_test_adv_pred = model.predict(X_test_adv)
        # predictions_fpath = os.path.join(predictions_folder, "%s.npy"% attack_string)
        # np.save(predictions_fpath, Y_test_adv_pred, allow_pickle=False)

        # 5.1 Evaluate the adversarial examples being discretized to uint8.
        print("\n---Attack (uint8): %s" % attack_string)
        # All data should be discretized to uint8.
        X_test_adv_discret = reduce_precision_py(X_test_adv, 256)
        X_test_adv_discretized_list.append(X_test_adv_discret)
        Y_test_adv_discret_pred = model.predict(X_test_adv_discret)
        Y_test_adv_discretized_pred_list.append(Y_test_adv_discret_pred)

        rec = evaluate_adversarial_examples2(X_test, Y_test, X_test_adv_discret, Y_test_target.copy(), targeted, Y_test_adv_discret_pred, attack_string)
        confidences = rec['confidence_scores']
        preds = np.argmax(Y_test_adv_discret_pred,axis=1)
        k = 0
        confidence_scores = ""
        preds_after_attack = ""
        mean = 0
        for pred in preds:
            preds_after_attack += str(pred) + ","
            if pred == FLAGS.label_index:
                confidence_scores += str(float("nan")) + ","
            else:
                try:
                    confidence_scores += str(confidences[k]) + ","
                    mean += float(confidences[k])
                except:
                    confidence_scores += str(float("nan")) + ","
                k += 1
        mean /= len(preds)
        rec['confidence_scores'] = confidence_scores.rstrip(",")
        rec['dataset_name'] = FLAGS.dataset_name
        rec['model_name'] = FLAGS.model_name
        rec['attack_string'] = attack_string
        rec['original_label_index'] = FLAGS.label_index
        rec['random'] = True if FLAGS.random_image != 0 else False
        rec['duration_per_sample'] = dur_per_sample
        rec['discretization'] = True
        rec['prediction_after_attack'] = preds_after_attack.rstrip(",")
        rec['number_of_images'] = FLAGS.nb_examples
        rec['mean_confidence'] = mean
        to_csv.append(rec)

    from utils.output import write_to_csv
    attacks_evaluation_csv_fpath = os.path.join(FLAGS.result_folder,"evaluation.csv")
    fieldnames = ['dataset_name', 'model_name', 'attack_string', 'original_label_index', 'random',  'duration_per_sample', 'discretization', 'success_rate', 'mean_confidence', 'confidence_scores', 'mean_l2_dist', 'mean_li_dist', 'mean_l0_dist_value', 'mean_l0_dist_pixel', 'prediction_after_attack', 'number_of_images']
    write_to_csv(to_csv, attacks_evaluation_csv_fpath, fieldnames)

    if FLAGS.visualize is True:
        from datasets.visualization import show_imgs_in_rows2
        if FLAGS.test_mode or FLAGS.balance_sampling:
            selected_idx_vis = range(Y_test.shape[1])
        else:
            #selected_idx_vis = get_first_n_examples_id_each_class(Y_test, 1)
            #selected_idx_vis = selected_idx
            selected_idx_vis = [i for i in range(FLAGS.nb_examples)]
        legitimate_examples = X_test[selected_idx_vis]

        rows = [legitimate_examples]
        rows += map(lambda x: x[selected_idx_vis], X_test_adv_list)
        img_fpath = os.path.join(FLAGS.result_folder, '%s_attacks_%s_examples.png' % (task_id, attack_string_hash))
        show_imgs_in_rows2(rows, dataset.num_channels, img_fpath)
        print('\n===Adversarial image examples are saved in ', img_fpath)
        print(Y_test_adv_discretized_pred_list)

        """rows = [legitimate_examples]
Exemple #11
0
def main(argv=None):
    # 0. Select a dataset.
    from datasets import MNISTDataset, CIFAR10Dataset, ImageNetDataset
    from datasets import get_correct_prediction_idx, evaluate_adversarial_examples, calculate_mean_confidence, calculate_accuracy

    if FLAGS.dataset_name == "MNIST":
        dataset = MNISTDataset()
    elif FLAGS.dataset_name == "CIFAR-10":
        dataset = CIFAR10Dataset()
    elif FLAGS.dataset_name == "ImageNet":
        dataset = ImageNetDataset()


    # 1. Load a dataset.
    print ("\n===Loading %s data..." % FLAGS.dataset_name)
    if FLAGS.dataset_name == 'ImageNet':
        if FLAGS.model_name == 'inceptionv3':
            img_size = 299
        else:
            img_size = 224
        X_test_all, Y_test_all = dataset.get_test_data(img_size, 0, 200)
    else:
        X_test_all, Y_test_all = dataset.get_test_dataset()


    # 2. Load a trained model.
    sess = load_tf_session()
    keras.backend.set_learning_phase(0)
    # Define input TF placeholder
    x = tf.placeholder(tf.float32, shape=(None, dataset.image_size, dataset.image_size, dataset.num_channels))
    y = tf.placeholder(tf.float32, shape=(None, dataset.num_classes))

    with tf.variable_scope(FLAGS.model_name):
        """
        Create a model instance for prediction.
        The scaling argument, 'input_range_type': {1: [0,1], 2:[-0.5, 0.5], 3:[-1, 1]...}
        """
        model = dataset.load_model_by_name(FLAGS.model_name, logits=False, input_range_type=1)
        model.compile(loss='categorical_crossentropy',optimizer='sgd', metrics=['acc'])


    # 3. Evaluate the trained model.
    # TODO: add top-5 accuracy for ImageNet.
    print ("Evaluating the pre-trained model...")
    Y_pred_all = model.predict(X_test_all)
    mean_conf_all = calculate_mean_confidence(Y_pred_all, Y_test_all)
    accuracy_all = calculate_accuracy(Y_pred_all, Y_test_all)
    print('Test accuracy on raw legitimate examples %.4f' % (accuracy_all))
    print('Mean confidence on ground truth classes %.4f' % (mean_conf_all))


    # 4. Select some examples to attack.
    import hashlib
    from datasets import get_first_example_id_each_class
    # Filter out the misclassified examples.
    correct_idx = get_correct_prediction_idx(Y_pred_all, Y_test_all)
    if FLAGS.test_mode:
        # Only select the first example of each class.
        correct_and_selected_idx = get_first_example_id_each_class(Y_test_all[correct_idx])
        selected_idx = [ correct_idx[i] for i in correct_and_selected_idx ]
    else:
        selected_idx = correct_idx[:FLAGS.nb_examples]

    from utils.output import format_number_range
    selected_example_idx_ranges = format_number_range(sorted(selected_idx))
    print ( "Selected %d examples." % len(selected_idx))
    print ( "Selected index in test set (sorted): %s" % selected_example_idx_ranges )

    X_test, Y_test, Y_pred = X_test_all[selected_idx], Y_test_all[selected_idx], Y_pred_all[selected_idx]

    accuracy_selected = calculate_accuracy(Y_pred, Y_test)
    mean_conf_selected = calculate_mean_confidence(Y_pred, Y_test)
    print('Test accuracy on selected legitimate examples %.4f' % (accuracy_selected))
    print('Mean confidence on ground truth classes, selected %.4f\n' % (mean_conf_selected))

    task = {}
    task['dataset_name'] = FLAGS.dataset_name
    task['model_name'] = FLAGS.model_name
    task['accuracy_test'] = accuracy_all
    task['mean_confidence_test'] = mean_conf_all

    task['test_set_selected_length'] = len(selected_idx)
    task['test_set_selected_idx_ranges'] = selected_example_idx_ranges
    task['test_set_selected_idx_hash'] = hashlib.sha1(str(selected_idx).encode('utf-8')).hexdigest()
    task['accuracy_test_selected'] = accuracy_selected
    task['mean_confidence_test_selected'] = mean_conf_selected

    task_id = "%s_%d_%s_%s" % \
            (task['dataset_name'], task['test_set_selected_length'], task['test_set_selected_idx_hash'][:5], task['model_name'])

    FLAGS.result_folder = os.path.join(FLAGS.result_folder, task_id)
    if not os.path.isdir(FLAGS.result_folder):
        os.makedirs(FLAGS.result_folder)

    from utils.output import save_task_descriptor
    save_task_descriptor(FLAGS.result_folder, [task])


    # 5. Generate adversarial examples.
    from attacks import maybe_generate_adv_examples, parse_attack_string
    from defenses.feature_squeezing.squeeze import reduce_precision_np
    attack_string_hash = hashlib.sha1(FLAGS.attacks.encode('utf-8')).hexdigest()[:5]
    sample_string_hash = task['test_set_selected_idx_hash'][:5]

    from attacks import get_next_class, get_least_likely_class
    Y_test_target_next = get_next_class(Y_test)
    Y_test_target_ll = get_least_likely_class(Y_pred)

    X_test_adv_list = []

    attack_string_list = filter(lambda x:len(x)>0, FLAGS.attacks.lower().split(';'))
    to_csv = []

    X_adv_cache_folder = os.path.join(FLAGS.result_folder, 'adv_examples')
    adv_log_folder = os.path.join(FLAGS.result_folder, 'adv_logs')
    predictions_folder = os.path.join(FLAGS.result_folder, 'predictions')
    for folder in [X_adv_cache_folder, adv_log_folder, predictions_folder]:
        if not os.path.isdir(folder):
            os.makedirs(folder)

    predictions_fpath = os.path.join(predictions_folder, "legitimate.npy")
    np.save(predictions_fpath, Y_pred, allow_pickle=False)

    for attack_string in attack_string_list:
        attack_log_fpath = os.path.join(adv_log_folder, "%s_%s.log" % (task_id, attack_string))
        attack_name, attack_params = parse_attack_string(attack_string)
        print ( "\nRunning attack: %s %s" % (attack_name, attack_params))

        if 'targeted' in attack_params:
            targeted = attack_params['targeted']
            if targeted == 'next':
                Y_test_target = Y_test_target_next
            elif targeted == 'll':
                Y_test_target = Y_test_target_ll
        else:
            targeted = False
            attack_params['targeted'] = False
            Y_test_target = Y_test.copy()

        x_adv_fname = "%s_%s.pickle" % (task_id, attack_string)
        x_adv_fpath = os.path.join(X_adv_cache_folder, x_adv_fname)

        X_test_adv, aux_info = maybe_generate_adv_examples(sess, model, x, y, X_test, Y_test_target, attack_name, attack_params, use_cache = x_adv_fpath, verbose=FLAGS.verbose, attack_log_fpath=attack_log_fpath)
        X_test_adv_list.append(X_test_adv)

        if isinstance(aux_info, float):
            duration = aux_info
        else:
            print (aux_info)
            duration = aux_info['duration']

        dur_per_sample = duration / len(X_test_adv)

        # 5.0 Output predictions.
        Y_test_adv_pred = model.predict(X_test_adv)
        predictions_fpath = os.path.join(predictions_folder, "%s.npy"% attack_string)
        np.save(predictions_fpath, Y_test_adv_pred, allow_pickle=False)

        # 5.1. Evaluate the quality of adversarial examples

        print ("\n---Attack: %s" % attack_string)
        rec = evaluate_adversarial_examples(X_test, X_test_adv, Y_test_target.copy(), targeted, Y_test_adv_pred)
        print ("Duration per sample: %.1fs" % dur_per_sample)
        rec['dataset_name'] = FLAGS.dataset_name
        rec['model_name'] = FLAGS.model_name
        rec['attack_string'] = attack_string
        rec['duration_per_sample'] = dur_per_sample
        rec['discretization'] = False
        to_csv.append(rec)

        # 5.2 Adversarial examples being discretized to uint8.
        print ("\n---Attack (uint8): %s" % attack_string)
        X_test_adv_discret = reduce_precision_np(X_test_adv, 256)
        Y_test_adv_discret_pred = model.predict(X_test_adv_discret)
        rec = evaluate_adversarial_examples(X_test, X_test_adv_discret, Y_test_target.copy(), targeted, Y_test_adv_discret_pred)
        rec['dataset_name'] = FLAGS.dataset_name
        rec['model_name'] = FLAGS.model_name
        rec['attack_string'] = attack_string
        rec['duration_per_sample'] = dur_per_sample
        rec['discretization'] = True
        to_csv.append(rec)


    from utils.output import write_to_csv
    attacks_evaluation_csv_fpath = os.path.join(FLAGS.result_folder, 
            "%s_attacks_%s_evaluation.csv" % \
            (task_id, attack_string_hash))
    fieldnames = ['dataset_name', 'model_name', 'attack_string', 'duration_per_sample', 'discretization', 'success_rate', 'mean_confidence', 'mean_l2_dist', 'mean_li_dist', 'mean_l0_dist_value', 'mean_l0_dist_pixel']
    write_to_csv(to_csv, attacks_evaluation_csv_fpath, fieldnames)


    if FLAGS.visualize is True:
        from datasets.visualization import show_imgs_in_rows
        if FLAGS.test_mode:
            selected_idx_vis = range(Y_test.shape[1])
        else:
            selected_idx_vis = get_first_example_id_each_class(Y_test)
        legitimate_examples = X_test[selected_idx_vis]

        rows = [legitimate_examples]
        rows += map(lambda x:x[selected_idx_vis], X_test_adv_list)

        img_fpath = os.path.join(FLAGS.result_folder, '%s_attacks_%s_examples.png' % (task_id, attack_string_hash) )
        show_imgs_in_rows(rows, img_fpath)
        print ('\n===Adversarial image examples are saved in ', img_fpath)

        # TODO: output the prediction and confidence for each example, both legitimate and adversarial.


    # 6. Evaluate defense techniques.
    if FLAGS.defense == 'feature_squeezing':
        """
        Test the accuracy with feature squeezing filters.
        """
        from defenses.feature_squeezing.robustness import calculate_squeezed_accuracy_new

        # Calculate the accuracy of legitimate examples for only once.
        csv_fpath = "%s_%s_robustness.csv" % (task_id, attack_string_hash)
        print ("Saving robustness test results at %s" % csv_fpath)
        csv_fpath = os.path.join(FLAGS.result_folder, csv_fpath)
        calculate_squeezed_accuracy_new(model, Y_test, X_test, attack_string_list, X_test_adv_list, csv_fpath)


    # 7. Detection experiment. 
    # All data should be discretized to uint8.
    X_test_adv_discretized_list = [ reduce_precision_np(X_test_adv, 256) for X_test_adv in X_test_adv_list]
    del X_test_adv_list

    if FLAGS.detection == 'feature_squeezing':
        from utils.detection import evalulate_detection_test, get_detection_train_test_set

        # 7.1 Prepare the dataset for detection.
        X_detect_train, Y_detect_train, X_detect_test, Y_detect_test, test_idx, failed_adv_idx = \
                    get_detection_train_test_set(X_test_all, Y_test, X_test_adv_discretized_list, predict_func=model.predict)

        # 7.2 Enumerate all specified detection methods.
        # Take Feature Squeezing as an example.

        csv_fname = "%s_attacks_%s_detection_two_filters_%s_raw_adv.csv" % (task_id, attack_string_hash, FLAGS.detection)
        detection_csv_fpath = os.path.join(FLAGS.result_folder, csv_fname)
        to_csv = []

        from defenses.feature_squeezing.detection import FeatureSqueezingDetector
        from sklearn.metrics import roc_curve, auc
        fsd = FeatureSqueezingDetector(model, task_id, attack_string_hash)

        # TODO: Automatically get the suitable squeezers through robustness test with legitimate examples.
        # squeezers_name = fsd.select_squeezers(X_test, Y_test, accuracy_preserved=0.9)

        if FLAGS.dataset_name == "MNIST":
            squeezers_name = ['median_smoothing_2', 'median_smoothing_3', 'binary_filter']
        elif FLAGS.dataset_name == "CIFAR-10":
            squeezers_name = ["bit_depth_6", 'median_smoothing_1_2', 'median_smoothing_2_1','median_smoothing_2']
        elif FLAGS.dataset_name == "ImageNet":
            squeezers_name = ["bit_depth_5", 'median_smoothing_1_2', 'median_smoothing_2_1','median_smoothing_2']

        # best_metrics = fsd.view_adv_propagation(X_test, X_test_adv_list[0], squeezers_name)
        # best_metrics = [[len(model.layers)-1, 'none', 'kl_f'], [len(model.layers)-1, 'none', 'l1'], [len(model.layers)-1, 'none', 'l2'], \
                        # [len(model.layers)-1, 'unit_norm', 'l1'], [len(model.layers)-1, 'unit_norm', 'l2']]
        best_metrics = [[len(model.layers)-1, 'none', 'l1']]

        for layer_id, normalizer_name, metric_name in best_metrics:
            fsd.set_config(layer_id, normalizer_name, metric_name, squeezers_name)
            print ("===Detection config: Layer-%d, Metric-%s, Norm-%s" % (layer_id, metric_name, normalizer_name))

            csv_fpath = "%s_distances_%s_%s_layer_%d.csv" % (task_id, metric_name, normalizer_name, layer_id)
            csv_fpath = os.path.join(FLAGS.result_folder, csv_fpath)

            fsd.output_distance_csv([X_test_all] + X_test_adv_discretized_list, ['legitimate'] + attack_string_list, csv_fpath)

            # continue

            threshold = fsd.train(X_detect_train, Y_detect_train)
            Y_detect_pred, distances = fsd.test(X_detect_test)

            accuracy, tpr, fpr = evalulate_detection_test(Y_detect_test, Y_detect_pred)
            fprs, tprs, thresholds = roc_curve(Y_detect_test, distances)
            roc_auc = auc(fprs, tprs)

            print ("ROC-AUC: %.2f, Accuracy: %.2f, TPR: %.2f, FPR: %.2f, Threshold: %.2f." % (roc_auc, accuracy, tpr, fpr, threshold))

            ret = {}
            ret['threshold'] = threshold
            ret['accuracy'] = accuracy
            ret['fpr'] = fpr
            ret['tpr'] = tpr
            ret['roc_auc'] = roc_auc

            # index of false negatives
            fn_idx = np.where((Y_detect_test == True) & (Y_detect_pred == False))
            # index in Y_detect.
            fn_idx_Y_test = np.array(test_idx)[fn_idx]

            nb_failed_as_negative = len(fn_idx_Y_test) - len(set(fn_idx_Y_test) - set(failed_adv_idx))
            print ("%d/%d failed adv. examples in false negatives." % (nb_failed_as_negative, len(fn_idx_Y_test)))

            ret['fn'] = len(fn_idx_Y_test)
            ret['failed_adv_as_fn'] = nb_failed_as_negative

            tp_idx = np.where((Y_detect_test == True) & (Y_detect_pred == True))
            tp_idx_Y_test = np.array(test_idx)[tp_idx]
            nb_failed_as_positive = len(tp_idx_Y_test) - len(set(tp_idx_Y_test) - set(failed_adv_idx))
            print ("%d/%d failed adv. examples in true positives." % (nb_failed_as_positive, len(tp_idx_Y_test)))

            ret['layer_id'] = layer_id
            ret['normalizer'] = normalizer_name
            ret['distance_metric'] = metric_name
            to_csv.append(ret)

        fieldnames = ['layer_id', 'distance_metric', 'normalizer', 'roc_auc', 'accuracy', 'tpr', 'fpr', 'threshold', 'failed_adv_as_fn', 'fn']
        write_to_csv(to_csv, detection_csv_fpath, fieldnames)