from one_shot_learning_network import * from experiment_builder import ExperimentBuilder import tensorflow.contrib.slim as slim import data as dataset import tqdm from utils.parser_utils import get_args from utils.storage import save_statistics, build_experiment_folder tf.reset_default_graph() args = get_args() # Experiment builder data = dataset.FolderDatasetLoader( num_of_gpus=1, batch_size=args.batch_size, image_height=28, image_width=28, image_channels=1, train_val_test_split=(1200 / 1622, 211 / 1622, 211 / 1622), samples_per_iter=1, num_workers=4, data_path="datasets/omniglot_data", name="omniglot_data", index_of_folder_indicating_class=-2, reset_stored_filepaths=False, num_samples_per_class=args.samples_per_class, num_classes_per_set=args.classes_per_set, label_as_int=True) experiment = ExperimentBuilder(data) one_shot_omniglot, losses, c_error_opt_op, init = experiment.build_experiment(
new_k = k.replace("ligand_arm.5", "lig_norm2") elif layer_num == 9: new_k = k.replace("ligand_arm.9", "lig_norm3") elif "protein" in k: if layer_num == 0: new_k = k.replace("protein_arm.0", "prot_conv1") elif layer_num == 4: new_k = k.replace("protein_arm.4", "prot_conv2") elif layer_num == 8: new_k = k.replace("protein_arm.8", "prot_conv3") elif layer_num == 1: new_k = k.replace("protein_arm.1", "prot_norm1") elif layer_num == 5: new_k = k.replace("protein_arm.5", "prot_norm2") elif layer_num == 9: new_k = k.replace("protein_arm.9", "prot_norm3") new_dict[new_k] = v return new_dict if __name__ == "__main__": from utils.parser_utils import get_args args, device = get_args() model = DeepDTAv2Meta(args=args, device="cpu") print("Initial", model.state_dict()["lig_conv1.weight"].mean()) model.load_from_path("DEEPDTAV2_SAMPLE_WEIGHT.pth") print("After", model.state_dict()["lig_conv1.weight"].mean())