Exemple #1
0
  def debug(self, batch, output, iter_id):
      opt = self.opt
      wh = output['wh'] if opt.reg_bbox else None
      reg = output['reg'] if opt.reg_offset else None
      dets = ddd_decode(output['hm'], output['rot'], output['dep'],
                          output['dim'], wh=wh, reg=reg, K=opt.K)

      # x, y, score, r1-r8, depth, dim1-dim3, cls
      dets = dets.detach().cpu().numpy().reshape(1, -1, dets.shape[2])
      calib = batch['meta']['calib'].detach().numpy()
      # x, y, score, rot, depth, dim1, dim2, dim3
      # if opt.dataset == 'gta':
      #   dets[:, 12:15] /= 3
      dets_pred = ddd_post_process(
        dets.copy(), batch['meta']['c'].detach().numpy(), 
        batch['meta']['s'].detach().numpy(), calib, opt)
      dets_gt = ddd_post_process(
        batch['meta']['gt_det'].detach().numpy().copy(),
        batch['meta']['c'].detach().numpy(), 
        batch['meta']['s'].detach().numpy(), calib, opt)
      #for i in range(input.size(0)):
      for i in range(1):
        debugger = Debugger(dataset=opt.dataset, ipynb=(opt.debug==3),
                            theme=opt.debugger_theme)
        img = batch['input'][i].detach().cpu().numpy().transpose(1, 2, 0)
        img = ((img * self.opt.std + self.opt.mean) * 255.).astype(np.uint8)
        pred = debugger.gen_colormap(
          output['hm'][i].detach().cpu().numpy())
        gt = debugger.gen_colormap(batch['hm'][i].detach().cpu().numpy())
        debugger.add_blend_img(img, pred, 'hm_pred')
        debugger.add_blend_img(img, gt, 'hm_gt')
        # decode
        debugger.add_ct_detection(
          img, dets[i], show_box=opt.reg_bbox, center_thresh=opt.center_thresh, 
          img_id='det_pred')
        debugger.add_ct_detection(
          img, batch['meta']['gt_det'][i].cpu().numpy().copy(), 
          show_box=opt.reg_bbox, img_id='det_gt')
        debugger.add_3d_detection(
          batch['meta']['image_path'][i], dets_pred[i], calib[i],
          center_thresh=opt.center_thresh, img_id='add_pred')
        debugger.add_3d_detection(
          batch['meta']['image_path'][i], dets_gt[i], calib[i],
          center_thresh=opt.center_thresh, img_id='add_gt')
        # debugger.add_bird_view(
        #   dets_pred[i], center_thresh=opt.center_thresh, img_id='bird_pred')
        # debugger.add_bird_view(dets_gt[i], img_id='bird_gt')
        debugger.add_bird_views(
          dets_pred[i], dets_gt[i], 
          center_thresh=opt.center_thresh, img_id='bird_pred_gt')
        
        # debugger.add_blend_img(img, pred, 'out', white=True)
        debugger.compose_vis_add(
          batch['meta']['image_path'][i], dets_pred[i], calib[i],
          opt.center_thresh, pred, 'bird_pred_gt', img_id='out')
        # debugger.add_img(img, img_id='out')
        if opt.debug ==4:
          debugger.save_all_imgs(opt.debug_dir, prefix='{}'.format(iter_id))
        else:
          debugger.show_all_imgs(pause=True)
Exemple #2
0
    def save_result(self, output, batch, results):
        opt = self.opt
        wh = output['wh'] if opt.reg_bbox else None
        reg = output['reg'] if opt.reg_offset else None
        dets = ddd_decode(output['hm'],
                          output['rot'],
                          output['dep'],
                          output['dim'],
                          wh=wh,
                          reg=reg,
                          K=opt.K)

        # x, y, score, r1-r8, depth, dim1-dim3, cls
        dets = dets.detach().cpu().numpy().reshape(1, -1, dets.shape[2])
        calib = batch['meta']['calib'].detach().numpy()
        # x, y, score, rot, depth, dim1, dim2, dim3
        dets_pred = ddd_post_process(dets.copy(),
                                     batch['meta']['c'].detach().numpy(),
                                     batch['meta']['s'].detach().numpy(),
                                     calib, opt)
        img_id = batch['meta']['img_id'].detach().numpy()[0]
        results[img_id] = dets_pred[0]
        for j in range(1, opt.num_classes + 1):
            keep_inds = (results[img_id][j][:, -1] > opt.center_thresh)
            results[img_id][j] = results[img_id][j][keep_inds]
 def post_process(self, dets, meta, scale=1):
     dets = dets.asnumpy()
     # print(dets.shape)
     #dets = dets.reshape(1, -1, dets.shape[2])
     dets = ddd_post_process(dets.copy(), [meta['c']], [meta['s']],
                             [meta['calib']], self.opt)
     self.this_calib = meta['calib']
     return dets[0]
Exemple #4
0
    def post_process(self, dets, meta, scale=1):
        # dets shape: batchsize x K x 18
        # dets[: , : 0:2]: xs , ys
        # dets[: , : 2:3]: scores
        # dets[: , : 3:11]: rot
        # dets[: , : 11:12]: depth
        # dets[: , : 12:15]: dim
        # dets[: , : 15:17]: w,h
        # dets[: , : 17:18]: clses

        dets = dets.detach().cpu().numpy()
        detections = ddd_post_process(dets.copy(), [meta['c']], [meta['s']],
                                      [meta['calib']], self.opt)
        self.this_calib = meta['calib']
        return detections[0]
Exemple #5
0
 def post_process(self, dets, meta, scale=1):
   dets = dets.detach().cpu().numpy()
   detections = ddd_post_process(
     dets.copy(), [meta['c']], [meta['s']], [meta['calib']], self.opt)
   self.this_calib = meta['calib']
   return detections[0]