def main():
    # read input args
    if len(sys.argv) != 3:
        print "usage: " + sys.argv[0] + " outer_size fps"
        return -1
    outer_size = int(sys.argv[1])
    fps = int(sys.argv[2])
    # delete old postit image
    old_postit_image = os.listdir('./datas/postit_saved/')
    for old_postit in old_postit_image:
        os.remove('./datas/postit_saved/' + old_postit)

    # memory save
    gc.enable()

    # set parameter
    analyse_config = yaml.load(open("./config/analyse_config.yaml", "r"))
    dist_thre = analyse_config["dist_thre"]
    angle_thre = analyse_config["angle_thre"]
    time_thre = analyse_config["time_thre"]
    video_save = False
    skip_mode = True

    # read movie file list
    movie_id = 0
    movie_files = os.listdir('./datas/movie/')
    if len(movie_files) == 0:
        print "no movie"
        return -1
    else:
        print "movie files:"
        for movie_file_each in movie_files:
            print movie_file_each

    # video reader and writer
    cap = cv2.VideoCapture('./datas/movie/' + movie_files[0])
    if video_save:
        writer = cv2.VideoWriter("./datas/movie/OUT.avi",
                                 cv2.cv.CV_FOURCC('M', 'J', 'P', 'G'), fps,
                                 (3840, 2160))
    # csv_file
    csv_every_second = open("./datas/csv/every_second.csv", "w")
    csv_final = open("./datas/csv/final.csv", "w")

    # reed solomon
    rs = RSCodec(14)

    # first select the desk area
    ret, frame = cap.read()
    window_name = "SELECT DESK"
    frame_for_select = cv2.resize(
        frame, (int(frame.shape[1] * 0.2), int(frame.shape[0] * 0.2)))
    print "Please select left-top and right-down"
    cv2.imshow(window_name, frame_for_select)
    desk_area = []
    cv2.setMouseCallback(window_name, mouse_callback, desk_area)
    cv2.waitKey(0)
    cv2.destroyWindow(window_name)
    desk_area = np.array(desk_area) * 5
    # select the mask area
    window_name = "SELECT left-top, right-top, right-down"
    print "Please select left-top and right-down"
    cv2.imshow(
        window_name, frame[desk_area[0][1]:desk_area[1][1],
                           desk_area[0][0]:desk_area[1][0]])
    postit_area = []
    cv2.setMouseCallback(window_name, mouse_callback, postit_area)
    cv2.waitKey(0)
    cv2.destroyWindow(window_name)
    postit_area_width = np.linalg.norm(
        np.array(postit_area[0]) - np.array(postit_area[1]))
    postit_area_height = np.linalg.norm(
        np.array(postit_area[1]) - np.array(postit_area[2]))

    # result file
    experiment_result = open("./datas/csv/resolution_result.csv", "w")
    experiment_result.write(str(desk_area) + "\n")

    # set desk by myself
    # desk_area = np.array([[1615, 890], [2110, 1285]])
    for movie_id in range(len(movie_files)):
        for resolution in range(0, 100):
            resolution = float(resolution) * 0.01
            print "pattern:" + str(resolution)
            time = 0
            success_count = 0
            postit_saved = {}
            cap = cv2.VideoCapture('./datas/movie/' + movie_files[movie_id])
            while (1):
                # read frame
                # print "progress: " + str(time)
                ret, frame = cap.read()
                if ret == False:
                    break
                    # movie_id += 1
                    # if movie_id < len(movie_files):
                    #      cap = cv2.VideoCapture('./movie/' + movie_files[movie_id])
                    #      ret, frame = cap.read()
                    # else:
                    #      break
                # save frame for final
                frame_for_final = np.copy(frame)

                # extract only desk area
                frame = frame[desk_area[0][1]:desk_area[1][1],
                              desk_area[0][0]:desk_area[1][0]]

                # change resolution
                frame = cv2.resize(frame,
                                   (int(frame.shape[1] * (1 - resolution)),
                                    int(frame.shape[0] * (1 - resolution))))
                frame_for_save = np.copy(frame)
                outer_size_resized = outer_size * ((1 - resolution)**2)

                # get postit
                getPostits = post_util.getPostits(frame, outer_size_resized)
                # postit_image_analyzing = getPostits.postit_image_analyzing
                postit_points = getPostits.postit_points
                recognized_location_rectangle = getPostits.recognized_location_rectangle
                # add buffer
                for i in range(0, len(postit_points)):
                    for j in range(0, len(postit_points[i])):
                        postit_points[i][j] += desk_area[0]

                # read postit's id and save
                postit_ids = []
                bit_array_list = []
                for i in range(0, len(postit_points)):
                    # postit_image_analyzing = cv2.imread("./postit_tmp_analyzing/" + str(i) + ".jpg")
                    postit_image_analyzing = np.load(
                        "./tmp_datas/postit_tmp_analyzing/" + str(i) + ".npy")
                    bit_array = post_util.readDots(
                        postit_image_analyzing).bit_array

                    bit_array_answer = []
                    for num in rs.encode([62]):
                        bit_array_answer.append(num)

                    bit_array_list.append(bit_array)
                    result_num = -1
                    try:
                        result_num = rs.decode(bit_array)[0]
                    except:
                        result_num = -1

                    # success check
                    # if (recognized_location_rectangle == 8) and bit_array_answer == bit_array:
                    #     success_count += 1
                    recognized_id_rectangle = 0
                    for each_bit in zip(bit_array_answer, bit_array):
                        if each_bit[0] == each_bit[1]:
                            recognized_id_rectangle += 1
                    success_count += recognized_id_rectangle + recognized_location_rectangle

                    postit_ids.append(result_num)
                    # save postit image
                    if result_num != -1:
                        # already exist
                        if postit_saved.has_key(result_num):
                            # judge move and rotate
                            # calc dist
                            dist = np.linalg.norm(
                                np.mean(postit_saved[result_num]
                                        ["points_saved"],
                                        axis=0) -
                                np.mean(postit_points[i], axis=0))
                            # calc angle(degree)
                            angle_vec_before = np.array(
                                postit_saved[result_num]["points_saved"][0]
                            ) - np.array(
                                postit_saved[result_num]["points_saved"][1])
                            angle_vec_after = np.array(
                                postit_points[i][0]) - np.array(
                                    postit_points[i][1])
                            vec_cos = np.dot(
                                angle_vec_before, angle_vec_after) / (
                                    np.linalg.norm(angle_vec_before) *
                                    np.linalg.norm(angle_vec_after))
                            angle = np.arccos(vec_cos) * 180 / np.pi
                            # add information
                            if dist > dist_thre:
                                if len(postit_saved[result_num]["move"]) == 0:
                                    postit_saved[result_num]["move"].append(
                                        time / fps)
                                elif (time / fps -
                                      postit_saved[result_num]["move"][-1]
                                      ) > 5:
                                    postit_saved[result_num]["move"].append(
                                        time / fps)
                            elif angle > angle_thre:
                                if len(postit_saved[result_num]
                                       ["rotate"]) == 0:
                                    postit_saved[result_num]["rotate"].append(
                                        time / fps)
                                elif (time / fps -
                                      postit_saved[result_num]["rotate"][-1]
                                      ) > 5:
                                    postit_saved[result_num]["rotate"].append(
                                        time / fps)
                            # renew
                            postit_saved[result_num]["points"] = postit_points[
                                i]
                            postit_saved[result_num][
                                "points_saved"] = postit_points[i]
                            postit_saved[result_num]["last_time"] = time / fps
                        # first appear
                        else:
                            postit_saved[result_num] = {
                                "points": postit_points[i],
                                "points_saved": postit_points[i],
                                "first_time": time / fps,
                                "last_time": time / fps,
                                "move": [],
                                "rotate": []
                            }
                            postit_image_for_save = cv2.imread(
                                "./tmp_datas/postit_tmp/" + str(i) + ".jpg")
                            cv2.imwrite(
                                "./datas/postit_saved/" + str(result_num) +
                                ".jpg", postit_image_for_save)

                # delete old postit(long time no see)
                for id, val in postit_saved.items():
                    if (time / fps - val["last_time"]) > time_thre:
                        postit_saved[id]["points"] = [[-5, 0], [0, 0], [0, -5],
                                                      [-5, -5]]

                # write csv
                csv_util.write_every_second(postit_saved, csv_every_second)
                # memory save
                del getPostits
                gc.collect()

                # key waiting
                key = cv2.waitKey(1)
                if key == 27:
                    break

                # when drawing dict info
                for key in postit_saved:
                    cv2.drawContours(
                        frame_for_final,
                        [np.array(postit_saved[key]["points"]).astype(np.int)],
                        0, (0, 0, 220), 2)
                    cv2.putText(frame_for_final, str(key),
                                (np.mean(postit_saved[key]["points"],
                                         axis=0).astype(np.int)[0] - 40,
                                 np.mean(postit_saved[key]["points"],
                                         axis=0).astype(np.int)[1]),
                                cv2.FONT_HERSHEY_PLAIN, 5.0, (0, 140, 0), 5)
                show_img_final = cv2.resize(
                    frame_for_final, (int(frame_for_final.shape[1] * 0.3),
                                      int(frame_for_final.shape[0] * 0.3)))
                cv2.imshow("show2", show_img_final)

                # add time
                time += 1

                if time > 23:
                    break

            # final save
            csv_util.write_final(postit_saved, csv_final)

            # print success rate
            experiment_result.write(
                str(int(postit_area_height * (1 - resolution))) + "," +
                str(int(postit_area_width * (1 - resolution))) + "," +
                str(time) + "," + str(success_count) + "," +
                str(float(success_count) / time) + "\n")
            cv2.imwrite("./datas/postit_saved/frame.jpg", frame_for_save)
            print "-----success result------"
            print "resolution:" + str(
                int(postit_area_height * (1 - resolution))) + "," + str(
                    int(postit_area_width * (1 - resolution)))
            print "success count: " + str(success_count)
            print "time:" + str(time)
            print "success rate: " + str(float(success_count) / time)
def main():
    # read input args
    if len(sys.argv) != 3:
        print "usage: " + sys.argv[0] + " outer_size fps"
        return -1
    outer_size = int(sys.argv[1])
    fps = int(sys.argv[2])
    # delete old postit image
    old_postit_image = os.listdir('./datas/postit_saved/')
    for old_postit in old_postit_image:
        os.remove('./datas/postit_saved/' + old_postit)

    # memory save
    gc.enable()

    # set parameter
    analyse_config = yaml.load(open("./config/analyse_config.yaml", "r"))
    dist_thre = analyse_config["dist_thre"]
    angle_thre = analyse_config["angle_thre"]
    time_thre = analyse_config["time_thre"]
    # video_save = False
    skip_mode = True

    # video reader and writer
    cap = cv2.VideoCapture(0)
    cap.set(3, 2592)
    cap.set(4, 1944)

    # csv_file
    csv_every_second = open("./datas/csv/every_second.csv", "w")
    csv_final = open("./datas/csv/final.csv", "w")

    # reed solomon
    rs = RSCodec(14)

    #first select the desk area
    #while 1:
    #    ret, frame = cap.read()
    #    if ret:
    #        break

    cols = 860
    rows = 400
    projector_image = np.zeros((rows, cols, 3), np.int32)
    projector_image[:, :] = np.array([0, 255, 255], np.int32)

    cv2.imshow("projector", projector_image)

    ret, frame = cap.read()

    print frame.shape[0]
    print frame.shape[1]
    window_name = "SELECT DESK"
    frame_for_select = cv2.resize(
        frame, (int(frame.shape[1] * 0.2), int(frame.shape[0] * 0.2)))
    print "Please select left-top and right-down"
    cv2.imshow(window_name, frame_for_select)
    desk_area = []
    while 1:
        ret, frame = cap.read()
        frame_for_select = cv2.resize(
            frame, (int(frame.shape[1] * 0.2), int(frame.shape[0] * 0.2)))
        cv2.imshow(window_name, frame_for_select)
        cv2.setMouseCallback(window_name, mouse_callback, desk_area)
        cv2.waitKey(1)
        if len(desk_area) == 2:
            break

    cv2.destroyWindow(window_name)
    desk_area = np.array(desk_area) * 5

    print frame.shape[1]
    print frame.shape[0]
    # postit dictionary
    postit_saved = {}
    time = 0

    while (1):
        # skip or not skip
        if skip_mode and time % fps != 0:
            mimi = 0
            # grab frame
            #ret = cap.grab()
            #if ret == False:
            #    break
        else:
            # read frame
            print "progress: " + str(int(time / fps) / 60) + ":" + str(
                (time / fps) % 60)
            ret, frame = cap.read()
            if ret == False:
                break
            # save frame for final
            frame_for_final = np.copy(frame)

        if time % fps == 0:
            # extract only desk area
            frame = frame[desk_area[0][1]:desk_area[1][1],
                          desk_area[0][0]:desk_area[1][0]]

            # get postit
            getPostits = post_util.getPostits(frame, outer_size)
            # postit_image = getPostits.postit_image
            # postit_image_analyzing = getPostits.postit_image_analyzing
            postit_points = getPostits.postit_points

            #add buffer
            for i in range(0, len(postit_points)):
                for j in range(0, len(postit_points[i])):
                    postit_points[i][j] += desk_area[0]

            # read postit's id and save
            postit_ids = []
            bit_array_list = []
            for i in range(0, len(postit_points)):
                # postit_image_analyzing = cv2.imread("./postit_tmp_analyzing/" + str(i) + ".jpg")
                postit_image_analyzing = np.load(
                    "./tmp_datas/postit_tmp_analyzing/" + str(i) + ".npy")
                bit_array = post_util.readDots(
                    postit_image_analyzing).bit_array
                bit_array_list.append(bit_array)
                result_num = -1
                try:
                    result_num = rs.decode(bit_array)[0]
                except:
                    result_num = -1
                postit_ids.append(result_num)
                # save postit image
                if result_num != -1:
                    # already exist
                    if postit_saved.has_key(result_num):
                        # judge move and rotate
                        # calc dist
                        dist = np.linalg.norm(
                            np.mean(postit_saved[result_num]["points_saved"],
                                    axis=0) -
                            np.mean(postit_points[i], axis=0))
                        # calc angle(degree)
                        angle_vec_before = np.array(
                            postit_saved[result_num]["points_saved"]
                            [0]) - np.array(
                                postit_saved[result_num]["points_saved"][1])
                        angle_vec_after = np.array(
                            postit_points[i][0]) - np.array(
                                postit_points[i][1])
                        vec_cos = np.dot(angle_vec_before, angle_vec_after) / (
                            np.linalg.norm(angle_vec_before) *
                            np.linalg.norm(angle_vec_after))
                        angle = np.arccos(vec_cos) * 180 / np.pi
                        # add information
                        if dist > dist_thre:
                            if len(postit_saved[result_num]["move"]) == 0:
                                postit_saved[result_num]["move"].append(time /
                                                                        fps)
                            elif (time / fps -
                                  postit_saved[result_num]["move"][-1]) > 5:
                                postit_saved[result_num]["move"].append(time /
                                                                        fps)
                        elif angle > angle_thre:
                            if len(postit_saved[result_num]["rotate"]) == 0:
                                postit_saved[result_num]["rotate"].append(
                                    time / fps)
                            elif (time / fps -
                                  postit_saved[result_num]["rotate"][-1]) > 5:
                                postit_saved[result_num]["rotate"].append(
                                    time / fps)
                        # renew
                        postit_saved[result_num]["points"] = postit_points[i]
                        postit_saved[result_num][
                            "points_saved"] = postit_points[i]
                        postit_saved[result_num]["last_time"] = time / fps
                    # first appear
                    else:
                        postit_saved[result_num] = {
                            "points": postit_points[i],
                            "points_saved": postit_points[i],
                            "first_time": time / fps,
                            "last_time": time / fps,
                            "move": [],
                            "rotate": []
                        }
                        postit_image_for_save = cv2.imread(
                            "./tmp_datas/postit_tmp/" + str(i) + ".jpg")
                        cv2.imwrite(
                            "./datas/postit_saved/" + str(result_num) + ".jpg",
                            postit_image_for_save)

            # delete old postit(long time no see)
            for id, val in postit_saved.items():
                if (time / fps - val["last_time"]) > time_thre:
                    postit_saved[id]["points"] = [[-5, 0], [0, 0], [0, -5],
                                                  [-5, -5]]

            # write csv
            csv_util.write_every_second(postit_saved, csv_every_second)
            # memory save
            del getPostits
            gc.collect()

            #renew viewing
            for key in postit_saved:
                cv2.drawContours(
                    frame_for_final,
                    [np.array(postit_saved[key]["points"]).astype(np.int)], 0,
                    (0, 0, 255), 2)
                cv2.putText(frame_for_final,
                            str(key), (np.mean(postit_saved[key]["points"],
                                               axis=0).astype(np.int)[0] - 40,
                                       np.mean(postit_saved[key]["points"],
                                               axis=0).astype(np.int)[1]),
                            cv2.FONT_HERSHEY_PLAIN, 5.0, (0, 240, 0), 5)
            show_img_final = cv2.resize(frame_for_final,
                                        (int(frame_for_final.shape[1] * 0.3),
                                         int(frame_for_final.shape[0] * 0.3)))
            cv2.imshow("show2", show_img_final)

            #projector draw
            projector_image = np.zeros((rows, cols, 3), np.uint8)
            desk_width = desk_area[1][0] - desk_area[0][0]
            desk_height = desk_area[1][1] - desk_area[0][1]

            for key in postit_saved:
                postit_relative_points = []
                for i in range(0, len(postit_saved[key]["points"])):
                    scale = 0
                    relative_point = postit_saved[key]["points"][
                        i] - desk_area[0]
                    relative_point[0] = int(cols * scale * relative_point[0] /
                                            desk_width)
                    relative_point[1] = int(rows * scale * relative_point[1] /
                                            desk_height)
                    postit_relative_points.append(relative_point)
                for i in range(0, len(postit_relative_points)):
                    postit_relative_points[i][0] += int(
                        0.05 * (postit_relative_points[i][0] -
                                np.mean(postit_relative_points, axis=0)[0]))
                    postit_relative_points[i][1] += int(
                        0.05 * (postit_relative_points[i][1] -
                                np.mean(postit_relative_points, axis=0)[1]))
                pts = np.array(postit_relative_points, np.int32)
                cv2.polylines(projector_image, [pts], True, (0, 255, 255))
                cv2.putText(projector_image, str(key), (
                    np.mean(postit_relative_points, axis=0).astype(np.int)[0] -
                    30,
                    np.mean(postit_relative_points, axis=0).astype(np.int)[1] +
                    30), cv2.FONT_HERSHEY_PLAIN, 3.0, (0, 240, 0), 5)
            cv2.imshow("projector", projector_image)

        # key waiting
        key = cv2.waitKey(1)
        if key == 27:
            break

        # add time
        time += 1

    # final save
    csv_util.write_final(postit_saved, csv_final)
def main():
    # read input args
    if len(sys.argv) != 3:
        print "usage: " + sys.argv[0] + " outer_size fps"
        return -1
    outer_size = int(sys.argv[1])
    fps = int(sys.argv[2])
    # delete old postit image
    old_postit_image = os.listdir('./datas/postit_saved/')
    for old_postit in old_postit_image:
        os.remove('./datas/postit_saved/' + old_postit)

    # memory save
    gc.enable()

    # set parameter
    analyse_config = yaml.load(open("./config/analyse_config.yaml", "r"))
    dist_thre = analyse_config["dist_thre"]
    angle_thre = analyse_config["angle_thre"]
    time_thre = analyse_config["time_thre"]
    video_save = True
    skip_mode = True

    # read movie file list
    movie_id = 0
    movie_files = os.listdir('./datas/movie/')
    if len(movie_files) == 0:
        print "no movie"
        return -1
    else:
        print "movie files:"
        for movie_file_each in movie_files:
            print movie_file_each

    # video reader and writer
    cap = cv2.VideoCapture('./datas/movie/' + movie_files[0])

    # csv_file
    csv_every_second = open("./datas/csv/every_second.csv", "w")
    csv_final = open("./datas/csv/final.csv", "w")

    # reed solomon
    rs = RSCodec(14)

    # first select the desk area
    ret, frame = cap.read()
    window_name = "SELECT DESK"
    frame_for_select = cv2.resize(
        frame, (int(frame.shape[1] * 0.2), int(frame.shape[0] * 0.2)))
    print "Please select left-top and right-down"
    cv2.imshow(window_name, frame_for_select)
    desk_area = []
    cv2.setMouseCallback(window_name, mouse_callback, desk_area)
    cv2.waitKey(0)
    cv2.destroyWindow(window_name)
    desk_area = np.array(desk_area) * 5

    # video writer
    if video_save:
        writer = cv2.VideoWriter("./datas/movie/OUT.avi",
                                 cv2.cv.CV_FOURCC('M', 'J', 'P', 'G'), fps,
                                 (frame.shape[1], frame.shape[0]))

    # postit dictionary
    postit_saved = {}
    time = 0

    while (1):
        # skip or not skip
        if skip_mode and time % fps != 0:
            # grab frame
            ret = cap.grab()
            if ret == False:
                movie_id += 1
                if movie_id < len(movie_files):
                    cap = cv2.VideoCapture('./datas/movie/' +
                                           movie_files[movie_id])
                    ret = cap.grab()
                else:
                    break
        else:
            # read frame
            print "progress: " + str(int(time / fps) / 60) + ":" + str(
                (time / fps) % 60)
            ret, frame = cap.read()
            if ret == False:
                movie_id += 1
                if movie_id < len(movie_files):
                    cap = cv2.VideoCapture('./datas/movie/' +
                                           movie_files[movie_id])
                    ret, frame = cap.read()
                else:
                    break
            # save frame for final
            frame_for_final = np.copy(frame)

        if time % fps == 0:
            # extract only desk area
            frame = frame[desk_area[0][1]:desk_area[1][1],
                          desk_area[0][0]:desk_area[1][0]]

            # get postit
            getPostits = post_util.getPostits(frame, outer_size)
            # postit_image = getPostits.postit_image
            # postit_image_analyzing = getPostits.postit_image_analyzing
            postit_points = getPostits.postit_points
            # add buffer
            for i in range(0, len(postit_points)):
                for j in range(0, len(postit_points[i])):
                    postit_points[i][j] += desk_area[0]

            # read postit's id and save
            postit_ids = []
            bit_array_list = []
            for i in range(0, len(postit_points)):
                # postit_image_analyzing = cv2.imread("./postit_tmp_analyzing/" + str(i) + ".jpg")
                postit_image_analyzing = np.load(
                    "./tmp_datas/postit_tmp_analyzing/" + str(i) + ".npy")
                bit_array = post_util.readDots(
                    postit_image_analyzing).bit_array
                bit_array_list.append(bit_array)
                result_num = -1
                try:
                    result_num = rs.decode(bit_array)[0]
                except:
                    result_num = -1
                postit_ids.append(result_num)
                # save postit image
                if result_num != -1:
                    # already exist
                    if postit_saved.has_key(result_num):
                        # judge move and rotate
                        # calc dist
                        dist = np.linalg.norm(
                            np.mean(postit_saved[result_num]["points_saved"],
                                    axis=0) -
                            np.mean(postit_points[i], axis=0))
                        # calc angle(degree)
                        angle_vec_before = np.array(
                            postit_saved[result_num]["points_saved"]
                            [0]) - np.array(
                                postit_saved[result_num]["points_saved"][1])
                        angle_vec_after = np.array(
                            postit_points[i][0]) - np.array(
                                postit_points[i][1])
                        vec_cos = np.dot(angle_vec_before, angle_vec_after) / (
                            np.linalg.norm(angle_vec_before) *
                            np.linalg.norm(angle_vec_after))
                        angle = np.arccos(vec_cos) * 180 / np.pi
                        # add information
                        if dist > dist_thre:
                            if len(postit_saved[result_num]["move"]) == 0:
                                postit_saved[result_num]["move"].append(time /
                                                                        fps)
                            elif (time / fps -
                                  postit_saved[result_num]["move"][-1]) > 5:
                                postit_saved[result_num]["move"].append(time /
                                                                        fps)
                        elif angle > angle_thre:
                            if len(postit_saved[result_num]["rotate"]) == 0:
                                postit_saved[result_num]["rotate"].append(
                                    time / fps)
                            elif (time / fps -
                                  postit_saved[result_num]["rotate"][-1]) > 5:
                                postit_saved[result_num]["rotate"].append(
                                    time / fps)
                        # renew
                        postit_saved[result_num]["points"] = postit_points[i]
                        postit_saved[result_num][
                            "points_saved"] = postit_points[i]
                        postit_saved[result_num]["last_time"] = time / fps
                    # first appear
                    else:
                        postit_saved[result_num] = {
                            "points": postit_points[i],
                            "points_saved": postit_points[i],
                            "first_time": time / fps,
                            "last_time": time / fps,
                            "move": [],
                            "rotate": []
                        }
                        postit_image_for_save = cv2.imread(
                            "./tmp_datas/postit_tmp/" + str(i) + ".jpg")
                        cv2.imwrite(
                            "./datas/postit_saved/" + str(result_num) + ".jpg",
                            postit_image_for_save)

            # delete old postit(long time no see)
            for id, val in postit_saved.items():
                if (time / fps - val["last_time"]) > time_thre:
                    postit_saved[id]["points"] = [[-5, 0], [0, 0], [0, -5],
                                                  [-5, -5]]

            # write csv
            csv_util.write_every_second(postit_saved, csv_every_second)
            # memory save
            del getPostits
            gc.collect()

            # key waiting
            key = cv2.waitKey(1)
            if key == 27:
                break

        if skip_mode == False or time % fps == 0:
            # when drawing dict info
            for key in postit_saved:
                cv2.drawContours(
                    frame_for_final,
                    [np.array(postit_saved[key]["points"]).astype(np.int)], 0,
                    (0, 0, 200), 2)
                cv2.putText(frame_for_final,
                            str(key), (np.mean(postit_saved[key]["points"],
                                               axis=0).astype(np.int)[0] - 40,
                                       np.mean(postit_saved[key]["points"],
                                               axis=0).astype(np.int)[1]),
                            cv2.FONT_HERSHEY_PLAIN, 5.0, (0, 100, 0), 5)
            show_img_final = cv2.resize(frame_for_final,
                                        (int(frame_for_final.shape[1] * 0.3),
                                         int(frame_for_final.shape[0] * 0.3)))
            cv2.imshow("show2", show_img_final)
            if video_save:
                writer.write(frame_for_final)
        # add time
        time += 1

    # final save
    csv_util.write_final(postit_saved, csv_final)
Exemple #4
0
def main():
    # read input args
    if len(sys.argv) != 3:
        print("usage: " + sys.argv[0] + " outer_size fps")
        return -1
    outer_size = int(sys.argv[1])
    #outer_size = 1000
    fps = int(sys.argv[2])
    # delete old postit image
    old_postit_image = os.listdir('./datas/postit_saved/')
    for old_postit in old_postit_image:
        os.remove('./datas/postit_saved/' + old_postit)

    # memory save
    gc.enable()

    # set parameter
    analyse_config = yaml.load(open("./config/analyse_config.yaml", "r"))
    dist_thre = analyse_config["dist_thre"]
    angle_thre = analyse_config["angle_thre"]
    time_thre = analyse_config["time_thre"]
    # video_save = False
    skip_mode = True

    # video reader and writer
    cap = cv2.VideoCapture(0)
    cap.set(3, 2592)
    cap.set(4, 1944)

    # csv_file
    csv_every_second = open("./datas/csv/every_second.csv", "w")
    csv_final = open("./datas/csv/final.csv", "w")

    # reed solomon
    rs = RSCodec(14)

    # db connection
    conn = sqlite3.connect('husen_kansou.db')

    # DBを開く。適合関数・変換関数を有効にする。
    conn = sqlite3.connect('husen_kansou.db',
                           detect_types=sqlite3.PARSE_DECLTYPES
                           | sqlite3.PARSE_COLNAMES)

    # "TIMESTAMP"コンバータ関数 をそのまま ”DATETIME” にも使う
    sqlite3.dbapi2.converters['DATETIME'] = sqlite3.dbapi2.converters[
        'TIMESTAMP']

    c = conn.cursor()

    #first select the desk area
    while 1:
        ret, frame = cap.read()
        if ret:
            break

    print(frame.shape[0])
    print(frame.shape[1])
    window_name = "SELECT DESK"
    frame_for_select = cv2.resize(
        frame, (int(frame.shape[1] * 0.2), int(frame.shape[0] * 0.2)))
    print("Please select left-top and right-down")
    cv2.imshow(window_name, frame_for_select)
    desk_area = [[0, 0], [2592, 1944]]
    #cv2.setMouseCallback(window_name,mouse_callback, desk_area)
    #cv2.waitKey(0)
    cv2.destroyWindow(window_name)
    desk_area = np.array(desk_area) * 5

    print(frame.shape[1])
    print(frame.shape[0])
    # postit dictionary
    postit_saved = {}
    time = 0

    while (1):
        # skip or not skip
        if skip_mode and time % fps != 0:
            # grab frame
            ret, frame = cap.read()
            if ret == False:
                break
        else:
            # read frame
            print("progress: " + str(int(time / fps) / 60) + ":" + str(
                (time / fps) % 60))

            ret, frame = cap.read()
            if ret == False:
                break
            # save frame for final
            frame_for_final = np.copy(frame)

        if time % fps == 0:
            # extract only desk area
            frame = frame[desk_area[0][1]:desk_area[1][1],
                          desk_area[0][0]:desk_area[1][0]]

            # get postit
            getPostits = post_util.getPostits(frame, outer_size)
            # postit_image = getPostits.postit_image
            # postit_image_analyzing = getPostits.postit_image_analyzing
            postit_points = getPostits.postit_points

            #add buffer
            for i in range(0, len(postit_points)):
                for j in range(0, len(postit_points[i])):
                    postit_points[i][j] += desk_area[0]

            # read postit's id and save
            postit_ids = []
            bit_array_list = []
            #print len(postit_points)
            for i in range(0, len(postit_points)):
                # postit_image_analyzing = cv2.imread("./postit_tmp_analyzing/" + str(i) + ".jpg")
                postit_image_analyzing = np.load(
                    "./tmp_datas/postit_tmp_analyzing/" + str(i) + ".npy")
                #cv2.imshow("analyzing image", postit_image_analyzing)
                bit_array = post_util.readDots(
                    postit_image_analyzing).bit_array
                bit_array_list.append(bit_array)
                print bit_array
                result_num = -1
                try:
                    result_num = rs.decode(bit_array)[0]
                except:
                    result_num = -1
                postit_ids.append(result_num)
                print result_num
                # save postit image
                if result_num != -1:
                    #rint(postit_points[i])
                    #postit_center = postit_points[i][0]
                    #for j in range(0 ,4):
                    #        postit_center += postit_points[i][j]
                    #postit_center /= 4
                    postit_center = np.mean(postit_points[i], axis=0)
                    print postit_center
                    print sakuhin_id(postit_center)
                    # already exist
                    if postit_saved.has_key(result_num):
                        sid = sakuhin_id(postit_center)
                        if sid >= 0 and postit_saved[result_num][
                                "ranged"] == False:
                            postit_image_for_save = cv2.imread(
                                "./tmp_datas/postit_tmp/" + str(i) + ".jpg")
                            c.execute('SELECT * FROM kansou WHERE husen_id=?',
                                      (result_num, ))
                            rows = c.fetchall()
                            row_len = 0
                            tdate = datetime.datetime.now()
                            tstr = tdate.strftime('%Y_%m_%d_%H_%M_%S_')
                            cv2.imwrite(
                                "./datas/kansou_husen/" + str(sid) + "/" +
                                tstr + str(result_num) + "_" + str(len(rows)) +
                                ".jpg", postit_image_for_save)
                            c.execute(
                                "INSERT INTO kansou VALUES (?, ?, ?)",
                                (result_num, sid, datetime.datetime.now()))
                            print "dbinsert"
                            postit_saved[result_num]["ranged"] = True

                        # judge move and rotate
                        # calc dist
                        dist = np.linalg.norm(
                            np.mean(postit_saved[result_num]["points_saved"],
                                    axis=0) -
                            np.mean(postit_points[i], axis=0))
                        # calc angle(degree)
                        angle_vec_before = np.array(
                            postit_saved[result_num]["points_saved"]
                            [0]) - np.array(
                                postit_saved[result_num]["points_saved"][1])
                        angle_vec_after = np.array(
                            postit_points[i][0]) - np.array(
                                postit_points[i][1])
                        vec_cos = np.dot(angle_vec_before, angle_vec_after) / (
                            np.linalg.norm(angle_vec_before) *
                            np.linalg.norm(angle_vec_after))
                        angle = np.arccos(vec_cos) * 180 / np.pi
                        # add information
                        if dist > dist_thre:
                            if len(postit_saved[result_num]["move"]) == 0:
                                postit_saved[result_num]["move"].append(time /
                                                                        fps)
                            elif (time / fps -
                                  postit_saved[result_num]["move"][-1]) > 5:
                                postit_saved[result_num]["move"].append(time /
                                                                        fps)
                        elif angle > angle_thre:
                            if len(postit_saved[result_num]["rotate"]) == 0:
                                postit_saved[result_num]["rotate"].append(
                                    time / fps)
                            elif (time / fps -
                                  postit_saved[result_num]["rotate"][-1]) > 5:
                                postit_saved[result_num]["rotate"].append(
                                    time / fps)

                        if time / fps - postit_saved[result_num][
                                "last_time"] > 600:
                            #if False:
                            print "mouikkai appear"
                            postit_saved[result_num] = {
                                "points": postit_points[i],
                                "points_saved": postit_points[i],
                                "first_time": time / fps,
                                "last_time": time / fps,
                                "move": [],
                                "rotate": [],
                                "ranged": False
                            }

                            # Insert a row of data
                            sid = sakuhin_id(postit_center)
                            if (sid >= 0 and postit_saved[result_num]["ranged"]
                                    == False):
                                postit_image_for_save = cv2.imread(
                                    "./tmp_datas/postit_tmp/" + str(i) +
                                    ".jpg")
                                c.execute(
                                    'SELECT * FROM kansou WHERE husen_id=?',
                                    (result_num, ))
                                rows = c.fetchall()
                                row_len = 0
                                tdate = datetime.datetime.now()
                                tstr = tdate.strftime('%Y_%m_%d_%H_%M_%S_')
                                cv2.imwrite(
                                    "./datas/kansou_husen/" + str(sid) + "/" +
                                    tstr + str(result_num) + "_" +
                                    str(len(rows)) + ".jpg",
                                    postit_image_for_save)
                                c.execute(
                                    "INSERT INTO kansou VALUES (?, ?, ?)",
                                    (result_num, sid, datetime.datetime.now()))
                                print "dbinsert"
                                postit_saved[result_num]["ranged"] = True
                            # Save (commit) the changes
                            conn.commit()

                        # renew
                        postit_saved[result_num]["points"] = postit_points[i]
                        postit_saved[result_num][
                            "points_saved"] = postit_points[i]
                        postit_saved[result_num]["last_time"] = time / fps
                    # first appear
                    else:
                        print "first appear"
                        postit_saved[result_num] = {
                            "points": postit_points[i],
                            "points_saved": postit_points[i],
                            "first_time": time / fps,
                            "last_time": time / fps,
                            "move": [],
                            "rotate": [],
                            "ranged": False
                        }
                        postit_image_for_save = cv2.imread(
                            "./tmp_datas/postit_tmp/" + str(i) + ".jpg")

                        #for row in c.execute('SELECT * FROM kansou WHERE husen_id=?',(result_num)):
                        #    print(row)
                        #    row_len + 1
                        sid = sakuhin_id(postit_center)
                        if sid >= 0 and postit_saved[result_num][
                                "ranged"] == False:
                            c.execute('SELECT * FROM kansou WHERE husen_id=?',
                                      (result_num, ))
                            rows = c.fetchall()
                            row_len = 0
                            tdate = datetime.datetime.now()
                            tstr = tdate.strftime('%Y_%m_%d_%H_%M_%S_')
                            cv2.imwrite(
                                "./datas/kansou_husen/" + str(sid) + "/" +
                                tstr + str(result_num) + "_" + str(len(rows)) +
                                ".jpg", postit_image_for_save)
                            print("./datas/kansou_husen/" + str(sid) + "/" +
                                  tstr + str(result_num) + "_" +
                                  str(len(rows)) + ".jpg")
                            # Insert a row of data
                            c.execute(
                                "INSERT INTO kansou VALUES (?, ?, ?)",
                                (result_num, sid, datetime.datetime.now()))
                            print "dbinsert:" + str(sid)
                            postit_saved[result_num]["ranged"] = True

                        # Save (commit) the changes
                        conn.commit()

            # delete old postit(long time no see)
            for id, val in postit_saved.items():
                if (time / fps - val["last_time"]) > time_thre:
                    postit_saved[id]["points"] = [[-5, 0], [0, 0], [0, -5],
                                                  [-5, -5]]

            # write csv
            csv_util.write_every_second(postit_saved, csv_every_second)
            # memory save
            del getPostits
            gc.collect()

            #renew viewing
            for key in postit_saved:
                cv2.drawContours(
                    frame_for_final,
                    [np.array(postit_saved[key]["points"]).astype(np.int)], 0,
                    (0, 0, 255), 2)
                cv2.putText(frame_for_final,
                            str(key), (np.mean(postit_saved[key]["points"],
                                               axis=0).astype(np.int)[0] - 40,
                                       np.mean(postit_saved[key]["points"],
                                               axis=0).astype(np.int)[1]),
                            cv2.FONT_HERSHEY_PLAIN, 5.0, (0, 240, 0), 5)
            show_img_final = cv2.resize(frame_for_final,
                                        (int(frame_for_final.shape[1] * 0.3),
                                         int(frame_for_final.shape[0] * 0.3)))
            cv2.imshow("show2", show_img_final)
            cv2.imwrite("last.jpg", frame_for_final)

            #projector draw
            cols = 1366
            rows = 768
            projector_image = np.zeros((rows, cols, 3), np.uint8)
            desk_width = desk_area[1][0] - desk_area[0][0]
            desk_height = desk_area[1][1] - desk_area[0][1]
            postit_relative_points = []
            #print postit_saved
            iii = 0
            for key in postit_saved:
                postit_relative_points.append([])
                '''
                for i in range(0, len(postit_saved[key]["points"])):
                    postit_relative_points[iii].append(postit_saved[key]["points"] - desk_area[0])
                    postit_relative_points[iii][i][0] = int(cols * 1.0 / desk_width * postit_relative_points[i][j][0])
                    postit_relative_points[iii][i][1] = int(rows * 1.0 / desk_height * postit_relative_points[i][j][1])

                #cv2.drawContours(projector_image,(postit_relative_points[i]),0,(0,0,255),2)
                cv2.drawContours(projector_image, [np.array(postit_saved[key]["points"]).astype(np.int)], 0,
                                 (0, 0, 255), 2)
                cv2.putText(projector_image, str(key), (
                np.mean(postit_saved[key]["points"], axis=0).astype(np.int)[0] - 40,
                np.mean(postit_saved[key]["points"], axis=0).astype(np.int)[1]), cv2.FONT_HERSHEY_PLAIN, 5.0,
                            (0, 240, 0), 5)
                #pts = np.array(postit_relative_points[i], np.int32)
                #cv2.polylines(projector_image,[pts],True,(0,255,255))
                #cv2.putText(projector_image,str(postit_ids[i]),(int(postit_relative_points[i][0][0]),int(postit_relative_points[i][0][1])), cv2.FONT_HERSHEY_SIMPLEX , 1,(255,255,255),2)
                iii+=1
                '''
            cv2.imshow("projector", projector_image)

        # key waiting
        key = cv2.waitKey(1)
        if key == 27:
            break

        # add time
        time += 1

    # final save
    csv_util.write_final(postit_saved, csv_final)