def total_accurate_shots_v_points_correlation(): data = get_plot_data('midfielders', 'total_shots', 'points') total_shots_data = data['total_shots'] points = data['points'] shot_accuracy_data = get_plot_data('midfielders', 'shot_accuracy', 'points')['shot_accuracy'] accurate_shots = [total_shots_data[i]*shot_accuracy_data[i] for i in range(len(total_shots_data))] r = pearsonr(accurate_shots, points) return r
def total_accurate_shots_v_price_correlation(): data = get_plot_data('forwards', 'total_shots', 'price') total_shots_data = data['total_shots'] price = data['price'] shot_accuracy_data = get_plot_data('forwards', 'shot_accuracy', 'price')['shot_accuracy'] accurate_shots = [total_shots_data[i]*shot_accuracy_data[i] for i in range(len(total_shots_data))] r = pearsonr(accurate_shots, price) return r
def combined_score_v_price_correlation(): data = get_plot_data('midfielders', 'total_shots', 'price') total_shots_data = data['total_shots'] price = data['price'] shot_accuracy_data = get_plot_data('midfielders', 'shot_accuracy', 'points')['shot_accuracy'] chances_created_data = get_plot_data('midfielders', 'chances_created', 'points')['chances_created'] combined_score = [total_shots_data[i]*shot_accuracy_data[i]+0.33*chances_created_data[i] for i in range(len(total_shots_data))] r = pearsonr(combined_score, price) return r
def get_forwards_sorted_by_total_score(): """ Score is defined as total accurate shots :return: """ data = get_plot_data('forwards', 'total_shots', 'name') total_shots_data = data['total_shots'] players = data['name'] shot_accuracy_data = get_plot_data('forwards', 'shot_accuracy', 'points')['shot_accuracy'] scores = [total_shots_data[i]*shot_accuracy_data[i] for i in range(len(total_shots_data))] player_scores = [(players[i], scores[i]) for i in range(len(players))] player_scores = sorted(player_scores, key=lambda x: x[1], reverse=True) print(player_scores)
def get_midfielders_sorted_by_total_score(): """ Score is defined as total accurate shots + key passes :return: """ data = get_plot_data('midfielders', 'total_shots', 'name') total_shots_data = data['total_shots'] players = data['name'] shot_accuracy_data = get_plot_data('midfielders', 'shot_accuracy', 'points')['shot_accuracy'] chances_created_data = get_plot_data('midfielders', 'chances_created', 'points')['chances_created'] scores = [total_shots_data[i]*shot_accuracy_data[i]+0.33*chances_created_data[i] for i in range(len(total_shots_data))] player_scores = [(players[i], scores[i]) for i in range(len(players))] player_scores = sorted(player_scores, key=lambda x: x[1], reverse=True) print(player_scores)
def get_forwards_sorted_by_value(): """ Value is defined as score per price :return: """ data = get_plot_data('forwards', 'total_shots', 'name') total_shots_data = data['total_shots'] players = data['name'] data = get_plot_data('forwards', 'shot_accuracy', 'price') shot_accuracy_data = data['shot_accuracy'] prices = data['price'] values = [(total_shots_data[i]*shot_accuracy_data[i])/prices[i] for i in range(len(total_shots_data))] player_values = [(players[i], values[i], prices[i]) for i in range(len(players))] player_values = sorted(player_values, key=lambda x: x[1], reverse=True) print(player_values)
def shot_accuracy_v_points_correlation(): data = get_plot_data('forwards', 'shot_accuracy', 'points') r = pearsonr(data['shot_accuracy'], data['points']) return r
def attack_score_v_price_correlation(): data = get_plot_data('forwards', 'total_shots', 'price') r = pearsonr(data['total_shots'], data['price']) return r
__author__ = 'gj' from bokeh.plotting import figure, output_file, show from utils.read_data import get_plot_data data = get_plot_data('forwards', 'total_shots', 'points') total_shots_data = data['total_shots'] points = data['points'] shot_accuracy_data = get_plot_data('shot_accuracy', 'points')['shot_accuracy'] accurate_shots = [total_shots_data[i]*shot_accuracy_data[i] for i in range(len(total_shots_data))] output_file("total_accurate_shots_v_points_scatter.html") p = figure(plot_width=600, plot_height=600) p.circle(accurate_shots, points, size=20, color="navy", alpha=0.5) show(p)
__author__ = 'gj' from bokeh.plotting import figure, output_file, show from utils.read_data import get_plot_data data = get_plot_data('forwards', 'attack_score', 'points') output_file("attack_score_v_points_scatter.html") p = figure(plot_width=600, plot_height=600) p.circle(data['attack_score'], data['points'], size=20, color="navy", alpha=0.5) show(p)
__author__ = 'gj' from bokeh.plotting import figure, output_file, show from utils.read_data import get_plot_data data = get_plot_data('forwards', 'shot_accuracy', 'points') output_file("shot_accuracy_v_points_scatter.html") p = figure(plot_width=600, plot_height=600) p.circle(data['shot_accuracy'], data['points'], size=20, color="navy", alpha=0.5) show(p)
__author__ = 'gj' from bokeh.plotting import figure, output_file, show from utils.read_data import get_plot_data data = get_plot_data('forwards', 'total_shots', 'points') output_file("total_shots_v_points_scatter.html") p = figure(plot_width=600, plot_height=600) p.circle(data['total_shots'], data['points'], size=20, color="navy", alpha=0.5) show(p)
def chances_created_v_points_correlation(): data = get_plot_data('midfielders', 'chances_created', 'points') r = pearsonr(data['chances_created'], data['points']) return r
def key_passes_v_points_correlation(): data = get_plot_data('midfielders', 'key_passes', 'points') r = pearsonr(data['key_passes'], data['points']) return r
def total_shots_v_points_correlation(): data = get_plot_data('forwards', 'total_shots', 'points') r = pearsonr(data['total_shots'], data['points']) return r
def shots_inside_box_v_price_correlation(): data = get_plot_data('forwards', 'shots_inside_box', 'price') r = pearsonr(data['shots_inside_box'], data['price']) return r
__author__ = 'gj' from bokeh.plotting import figure, output_file, show from utils.read_data import get_plot_data data = get_plot_data('midfielders', 'total_shots', 'points') total_shots_data = data['total_shots'] points = data['points'] shot_accuracy_data = get_plot_data('midfielders', 'shot_accuracy', 'points')['shot_accuracy'] key_passes_data = get_plot_data('midfielders', 'key_passes', 'points')['key_passes'] combined_score = [total_shots_data[i]*shot_accuracy_data[i]+0.33*key_passes_data[i] for i in range(len(total_shots_data))] output_file("combined_score_v_points_scatter.html") p = figure(plot_width=600, plot_height=600) p.circle(combined_score, data['points'], size=20, color="navy", alpha=0.5) show(p)
def attack_score_v_points_correlation(): data = get_plot_data('forwards', 'attack_score', 'points') r = pearsonr(data['attack_score'], data['points']) return r
def shots_inside_box_v_points_correlation(): data = get_plot_data('midfielders', 'shots_inside_box', 'points') r = pearsonr(data['shots_inside_box'], data['points']) return r