Exemple #1
0
def gpb_from_func_caller(func_caller,
                         worker_manager,
                         max_capital,
                         is_mf,
                         mode=None,
                         acq=None,
                         mf_strategy=None,
                         domain_add_max_group_size=-1,
                         options=None,
                         reporter='default'):
    """ GP Bandit optimisation from a utils.function_caller.FunctionCaller instance.
    domain_add_max_group_size indicates whether we should use an additive model or not.
    If its negative, then use a non-additive model. If its positive, then use an additive
    model with maximum group size as given. If zero, then use the default in options.
  """
    # pylint: disable=too-many-branches
    reporter = get_reporter(reporter)
    if is_mf:
        if isinstance(func_caller.fidel_space, domains.EuclideanDomain) and \
           isinstance(func_caller.domain, domains.EuclideanDomain):
            optimiser_constructor = EuclideanGPBandit
            dflt_list_of_options = get_all_mf_gp_bandit_args_from_gp_args(
                euclidean_mf_gp_args)
    else:
        if isinstance(func_caller.domain, domains.EuclideanDomain):
            optimiser_constructor = EuclideanGPBandit
            dflt_list_of_options = get_all_gp_bandit_args_from_gp_args(
                euclidean_gp_args)
        else:
            raise ValueError('Random optimiser not implemented for domain of type %s.'%( \
                             type(func_caller.domain)))
    # Load options
    if options is None:
        reporter = get_reporter(reporter)
        options = load_options(dflt_list_of_options, reporter=reporter)
    if acq is not None:
        options.acq = acq
    if mode is not None:
        options.mode = mode
    if mf_strategy is not None:
        options.mf_strategy = mf_strategy
    # Additive model
    if domain_add_max_group_size >= 0:
        if is_mf:
            options.domain_use_additive_gp = True
            if domain_add_max_group_size > 0:
                options.domain_add_max_group_size = domain_add_max_group_size
        else:
            options.use_additive_gp = True
            if domain_add_max_group_size > 0:
                options.add_max_group_size = domain_add_max_group_size
    # create optimiser and return
    optimiser = optimiser_constructor(func_caller,
                                      worker_manager,
                                      is_mf=is_mf,
                                      options=options,
                                      reporter=reporter)
    return optimiser.optimise(max_capital)
Exemple #2
0
    def _get_ga_optimiser_args(cls,
                               obj,
                               num_evals,
                               mutation_op,
                               init_pool,
                               init_pool_vals=None,
                               expects_inputs_to_be_iterable=True):
        """ Returns arguments for the optimiser. """
        if expects_inputs_to_be_iterable:

            def _obj_wrap(_obj, _x):
                """ A wrapper for the optimiser for GA. """
                ret = _obj([_x])
                return ret[0]

            def _get_obj_wrap(_obj):
                """ Returns an optimiser for GA. """
                return lambda x: _obj_wrap(_obj, x)

            obj = _get_obj_wrap(obj)
        if init_pool_vals is None:
            init_pool_vals = [obj(nn) for nn in init_pool]
        reporter = get_reporter('silent')
        options = load_options(ga_opt_args, reporter=reporter)
        options.pre_eval_points = init_pool
        options.pre_eval_vals = init_pool_vals
        options.pre_eval_true_vals = init_pool_vals
        options.num_mutations_per_epoch = int(
            np.clip(3 * np.sqrt(num_evals), 5, 100))
        #     print 'GA opt args: ', num_evals, options.num_mutations_per_epoch
        return obj, options, reporter, mutation_op
Exemple #3
0
def nasbot(func_caller,
           worker_manager,
           budget,
           tp_comp=None,
           mode=None,
           init_pool=None,
           acq='hei',
           options=None,
           reporter='default'):
    """ NASBOT optimisation from a function caller. """
    nn_type = func_caller.domain.nn_type
    if options is None:
        reporter = get_reporter(reporter)
        options = load_options(all_nasbot_args, reporter=reporter)
    if acq is not None:
        options.acq = acq
    if mode is not None:
        options.mode = mode
    if tp_comp is None:
        tp_comp = get_default_otmann_distance(nn_type, 1.0)
    # Initial queries
    if not hasattr(options,
                   'pre_eval_points') or options.pre_eval_points is None:
        if init_pool is None:
            init_pool = get_initial_pool(nn_type)
        options.get_initial_points = lambda n: init_pool[:n]
    return (NASBOT(func_caller,
                   worker_manager,
                   tp_comp,
                   options=options,
                   reporter=reporter)).optimise(budget)
Exemple #4
0
 def __init__(self,
              X,
              Y,
              kernel,
              mean_func,
              noise_var,
              build_posterior=True,
              reporter=None,
              handle_non_psd_kernels=''):
     """ Constructor. """
     super(GP, self).__init__()
     _check_feature_label_lengths_and_format(X, Y)
     self.X = X
     self.Y = Y
     self.kernel = kernel
     self.mean_func = mean_func
     self.noise_var = noise_var
     self.reporter = get_reporter(reporter)
     self.handle_non_psd_kernels = handle_non_psd_kernels
     # Some derived attribues.
     self.num_tr_data = len(self.Y)
     # Initialise other attributes we will need.
     self.L = None
     self.alpha = None
     self.K_trtr = None
     self.K_trtr_wo_noise = None
     self._set_up()
     self.in_debug_mode = False
     # Build posterior if necessary
     if build_posterior:
         self.build_posterior()
Exemple #5
0
 def __init__(self,
              func_caller,
              worker_manager,
              mutation_op,
              crossover_op=None,
              options=None,
              reporter=None):
     """ Constructor.
   mutation_op: A function which takes in a list of objects and modifies them.
   crossover_op: A function which takes in two objects and performs a cross-over
                 operation.
   So far we have not implemented cross-over but included here in case we want to
   include it in the future.
   For other arguments, see BlackboxOptimiser
 """
     if options is None:
         reporter = get_reporter(reporter)
         options = load_options(ga_opt_args, reporter=reporter)
     super(GAOptimiser, self).__init__(func_caller,
                                       worker_manager,
                                       model=None,
                                       options=options,
                                       reporter=reporter)
     self.mutation_op = mutation_op
     self.crossover_op = crossover_op
     self.to_eval_points = []
Exemple #6
0
def optimize_chemist(func_caller,
                     worker_manager,
                     budget,
                     mode=None,
                     init_pool=None,
                     acq='hei',
                     options=None,
                     reporter='default'):
    """ Chemist optimization from a function caller. """
    if options is None:
        reporter = get_reporter(reporter)
        options = load_options(all_chemist_args, reporter=reporter)

    # TODO: what is this option?
    if acq is not None:
        options.acq = acq

    if mode is not None:
        options.mode = mode

    # Initial queries
    if not hasattr(options,
                   'pre_eval_points') or options.pre_eval_points is None:
        if init_pool is None:
            init_pool = get_initial_pool()
        options.get_initial_points = lambda n: init_pool[:n]

    return (Chemist(func_caller,
                    worker_manager,
                    options=options,
                    reporter=reporter)).optimise(budget)
Exemple #7
0
 def __init__(self,
              experiment_name,
              num_experiments,
              save_file_name,
              save_file_extension='',
              reporter='default',
              random_seed_val='time'):
     """ Constructor.
     random_seed_val: If None we will not change the random seed. If it is
       'time' we will set it to a time based value. If it is an int, we will set
       the seed to that value.
 """
     self.experiment_name = experiment_name
     self.num_experiments = num_experiments
     if save_file_extension == '':
         save_file_parts = save_file_name.split('.')
         save_file_name = save_file_parts[0]
         save_file_extension = save_file_parts[1]
     self.save_file_extension = save_file_extension
     self.save_file_full_name = save_file_name + '.' + self.save_file_extension
     self.pickle_file_name = save_file_name + '.p'
     self.reporter = get_reporter(reporter)
     self.to_be_saved = Namespace(experiment_name=self.experiment_name)
     self.data_not_to_be_mat_saved = []
     self.data_not_to_be_pickled = []
     # We will need these going forward.
     self.experiment_iter = 0
     # Set the random seed
     if random_seed_val is not None:
         if random_seed_val == 'time':
             random_seed_val = int(time() * 100) % 100000
         self.reporter.writeln('Setting random seed to %d.' %
                               (random_seed_val))
         np.random.seed(random_seed_val)
         random.seed(random_seed_val)
Exemple #8
0
 def __init__(self, constraint_checker=None, options=None, reporter=None):
   """ Constructor. """
   self.reporter = get_reporter(reporter)
   self.constraint_checker = constraint_checker
   if options is None:
     options = load_options(nn_modifier_args)
   self.options = options
def main():
    """ Main function. """
    options = load_options(all_mf_gp_bandit_args)
    prob, options = get_problem_parameters(options)

    # Set other variables
    all_methods = NONFINITE_METHODS + FINITE_METHODS
    method_options = {key: options for key in all_methods}
    noisy_str = 'noiseless' if not NOISY else 'noisy%0.3f' % (
        prob.mfof.noise_var)
    save_file_prefix = '%s-%s-p%d-d%d' % (prob.experiment_name, noisy_str,
                                          prob.mfof.fidel_dim,
                                          prob.mfof.domain_dim)
    reporter = get_reporter('default')

    experimenter = MFOptExperimenter(prob.experiment_name,
                                     prob.mfof,
                                     prob.max_capital,
                                     all_methods,
                                     prob.num_experiments,
                                     SAVE_RESULTS_DIR,
                                     save_file_prefix=save_file_prefix,
                                     method_options=method_options,
                                     method_reporter=reporter,
                                     reporter=reporter)
    experimenter.run_experiments()
Exemple #10
0
def mf_random_optimiser_from_func_caller(func_caller,
                                         worker_manager,
                                         max_capital,
                                         mode,
                                         options=None,
                                         reporter='default',
                                         *args,
                                         **kwargs):
    """ Creates a MF EuclideanRandomOptimiser Object and optimises the function. """
    reporter = get_reporter(reporter)
    if isinstance(func_caller.domain, domains.EuclideanDomain) and \
       isinstance(func_caller.fidel_space, domains.EuclideanDomain):
        optimiser_constructor = MFEuclideanRandomOptimiser
        dflt_list_of_options = mf_euclidean_random_optimiser_args
    else:
        raise ValueError(
            ('MF Random optimiser not implemented for (domain, fidel_space) ' +
             'of types (%s, %s).') %
            (type(func_caller.domain), type(func_caller.fidel_space)))
    # Load options
    if options is None:
        options = load_options(dflt_list_of_options)
    options.mode = mode
    # Create optimiser
    optimiser = optimiser_constructor(func_caller,
                                      worker_manager,
                                      options=options,
                                      reporter=reporter,
                                      *args,
                                      **kwargs)
    # optimise and return
    return optimiser.optimise(max_capital)
Exemple #11
0
def optimise_with_method_on_func_caller(method,
                                        func_caller,
                                        worker_manager,
                                        max_capital,
                                        options=None,
                                        reporter='default'):
    """ A wrapper that can be used to call all optimisation method. """
    if options is None:
        from gp_bandit import all_gp_bandit_args
        reporter = get_reporter(reporter)
        options = load_options(all_gp_bandit_args, reporter=reporter)

    # The mode should be specified in the first three letters of the method argument
    options.mode = method[0:3]

    if method in ['synRAND', 'asyRAND']:
        return random_optimiser_from_func_caller(func_caller,
                                                 worker_manager,
                                                 max_capital,
                                                 options=options,
                                                 reporter=reporter)
    elif method in [
            'asyTS', 'synTS', 'asyHTS', 'asyUCB', 'asyBUCB', 'synBUCB',
            'synUCBPE', 'asyEI'
    ]:
        from gp_bandit import gpb_from_func_caller
        options.acq = method[3:]
        return gpb_from_func_caller(func_caller,
                                    worker_manager,
                                    max_capital,
                                    options=options,
                                    reporter='default')
    else:
        raise ValueError('Unknown method %s!' % (method))
Exemple #12
0
 def _get_euc_gpb_arguments(cls, num_dims):
   """ Returns options for GP Bandits on a Euclidean space. """
   reporter = reporters.get_reporter('silent')
   gpb_args = gp_bandit.get_all_gp_bandit_args_from_gp_args(all_simple_gp_args)
   options = load_options(gpb_args, reporter=reporter)
   options.get_initial_points = lambda n: np.random.random((n, num_dims))
   options.num_init_evals = 20
   return options
Exemple #13
0
 def __init__(self, options, reporter='default'):
   """ Constructor. """
   super(GPFitter, self).__init__()
   self.reporter = get_reporter(reporter)
   if isinstance(options, list):
     options = load_options(options, 'GP', reporter=self.reporter)
   self.options = options
   self._set_up()
Exemple #14
0
def maximise_function(func,
                      max_capital,
                      domain=None,
                      domain_bounds=None,
                      config=None,
                      options=None,
                      hp_tune_criterion='post_sampling',
                      hp_tune_method='slice',
                      init_capital=None,
                      init_capital_frac=None,
                      num_init_evals=20):
    """
    Maximizes a function given a function and domain bounds of the hyperparameters
    and returns optimal value and optimal point.
  """
    reporter = get_reporter('default')
    if options is None:
        euc_gpb_args = get_all_gp_bandit_args_from_gp_args(euclidean_gp_args)
        options = load_options(euc_gpb_args)
        options.gpb_hp_tune_criterion = hp_tune_criterion
        options.gpb_post_hp_tune_method = hp_tune_method
        options.init_capital = init_capital
        options.init_capital_frac = init_capital_frac
        options.num_init_evals = num_init_evals

    # Check for Domains
    if domain is None:
        if config is not None:
            param_spec = config_parser(options.config)
            domain = create_domain(param_spec['domain'])
        elif domain_bounds is not None:
            domain = domains.EuclideanDomain(domain_bounds)
        else:
            raise ValueError(
                'Domain or path to config file or domain_bounds have to be given.'
            )

    # Create worker manager and function caller
    worker_manager = SyntheticWorkerManager(num_workers=1,
                                            time_distro='caller_eval_cost')
    if isinstance(domain, domains.EuclideanDomain):
        func_caller = EuclideanFunctionCaller(func, domain, vectorised=False)
    else:
        func_caller = FunctionCaller(func, domain)
    # Create GPBandit opbject and run optimiser
    gpb = EuclideanGPBandit(func_caller,
                            worker_manager,
                            reporter=reporter,
                            options=options)
    opt_val, opt_pt, history = gpb.optimise(max_capital)
    opt_pt = func_caller.get_raw_domain_coords(opt_pt)
    history.curr_opt_points = [
        func_caller.get_raw_domain_coords(pt) for pt in history.curr_opt_points
    ]
    history.query_points = [
        func_caller.get_raw_domain_coords(pt) for pt in history.query_points
    ]
    return opt_val, opt_pt, history
 def _get_optimiser_args(self, optimiser_args=chemist.all_chemist_args):
     """ Returns the options and reporter. """
     reporter = get_reporter('default')
     options = load_options(optimiser_args, reporter=reporter)
     options.pre_eval_points = self.ga_init_pool
     options.pre_eval_vals = self.ga_init_vals
     options.pre_eval_true_vals = self.ga_init_vals
     options_clone = deepcopy(options)
     return options, options_clone, reporter
Exemple #16
0
 def __init__(self, X, Y, options=None, reporter=None, *args, **kwargs):
     """ Constructor. """
     self.X = X
     self.Y = Y
     self.reporter = get_reporter(reporter)
     self.num_data = len(X)
     if options is None:
         options = load_options(mol_gp_args, 'GPFitter', reporter=reporter)
     super(MolGPFitter, self).__init__(options, *args, **kwargs)
def prep_optimiser_args(obj_func, optimiser_args):
    """ Returns the options and reporter. """
    reporter = get_reporter('default')
    options = load_options(optimiser_args, reporter=reporter)
    options.pre_eval_points = get_initial_pool()
    options.pre_eval_vals = [obj_func(mol) for mol in options.pre_eval_points]
    options.pre_eval_true_vals = options.pre_eval_vals
    options_clone = deepcopy(options)
    return options, options_clone, reporter
Exemple #18
0
 def __init__(self, X, Y, options=None, reporter=None):
     """ Constructor. """
     self.dim = len(X[0])
     reporter = get_reporter(reporter)
     if options is None:
         options = load_options(euclidean_gp_args,
                                'EuclideanGP',
                                reporter=reporter)
     super(EuclideanGPFitter, self).__init__(X, Y, options, reporter)
Exemple #19
0
 def __init__(self, ZZ, XX, YY, options=None, reporter=None):
     """ Constructor. options should either be a Namespace, a list or None. """
     reporter = get_reporter(reporter)
     if options is None:
         options = load_options(euclidean_mf_gp_args, 'MF-GP', reporter)
     self.fidel_dim = len(ZZ[0])
     self.domain_dim = len(XX[0])
     self.input_dim = self.fidel_dim + self.domain_dim
     super(EuclideanMFGPFitter, self).__init__(ZZ, XX, YY, options,
                                               reporter)
Exemple #20
0
 def __init__(self, ZZ, XX, YY, options=None, reporter=None):
     """ Constructor. """
     reporter = get_reporter(reporter)
     if isinstance(options, list):
         options = load_options(options, 'MFGP', reporter=self.reporter)
     self.ZZ = ZZ
     self.XX = XX
     self.YY = YY
     self.num_tr_data = len(self.YY)
     ZX = get_ZX_from_ZZ_XX(ZZ, XX)
     super(MFGPFitter, self).__init__(ZX, YY, options, reporter)
Exemple #21
0
 def __init__(self,
              func_caller,
              worker_manager,
              options=None,
              reporter=None):
     """ Constructor. """
     self.reporter = get_reporter(reporter)
     if options is None:
         options = load_options(all_gp_bandit_args, reporter=reporter)
     super(GPBandit, self).__init__(func_caller, worker_manager, options,
                                    self.reporter)
Exemple #22
0
def get_options_and_reporter(method, init_points, init_vals):
    """ Returns the options and reporter. """
    reporter = get_reporter('default')
    if method in ['GA', 'randGA']:
        options = load_options(ga_optimiser.ga_opt_args, reporter=reporter)
    else:
        raise ValueError('Unknown method %s.' % (method))
    options.pre_eval_points = init_points
    options.pre_eval_vals = init_vals
    options.pre_eval_true_vals = init_vals
    return options, reporter
Exemple #23
0
 def __init__(self, mf_opt_func, options=None, reporter=None):
     """ Constructor. """
     self.reporter = get_reporter(reporter)
     if options is None:
         options = load_options(all_mf_gp_bandit_args, reporter=reporter)
     self.options = options
     # Set up mfgp and mfof attributes
     self.mfof = mf_opt_func  # mfof refers to an MFOptFunction object.
     self.mfgp = None
     # Other set up
     self._set_up()
Exemple #24
0
 def __init__(self,
              func_caller,
              worker_manager,
              options=None,
              reporter=None):
     """ Constructor. """
     self.reporter = get_reporter(reporter)
     if options is None:
         options = load_options(blackbox_opt_args, reporter=reporter)
     super(RandomOptimiser, self).__init__(func_caller, worker_manager,
                                           options, self.reporter)
Exemple #25
0
 def __init__(self, X, Y, options, reporter='default'):
     """ Constructor. """
     super(GPFitter, self).__init__()
     assert len(X) == len(Y)
     self.reporter = get_reporter(reporter)
     if isinstance(options, list):
         options = load_options(options, 'GP', reporter=self.reporter)
     self.options = options
     self.X = X
     self.Y = Y
     self.num_data = len(X)
     self._set_up()
Exemple #26
0
 def __init__(self,
              func_caller,
              worker_manager,
              options=None,
              reporter=None):
     if options is None:
         reporter = get_reporter(reporter)
         options = load_options(all_chemist_args, reporter=reporter)
     super(Chemist, self).__init__(func_caller,
                                   worker_manager,
                                   options=options,
                                   reporter=reporter)
Exemple #27
0
 def __init__(self, ZZ, XX, YY, options=None, reporter=None):
   """ Constructor. options should either be a Namespace, a list or None"""
   reporter = get_reporter(reporter)
   if options is None:
     options = load_options(all_mf_gp_args, 'MF-GP', reporter)
   self.ZZ = ZZ
   self.XX = XX
   self.YY = YY
   self.ZX = np.concatenate((self.ZZ, self.XX), axis=1)
   self.fidel_dim = self.ZZ.shape[1]
   self.domain_dim = self.XX.shape[1]
   self.input_dim = self.fidel_dim + self.domain_dim
   super(MFGPFitter, self).__init__(options, reporter)
 def test_instantiation(self):
     """ Tests instantiation of the optimiser. """
     optimiser = self._child_instantiate_optimiser(
         self.func_caller,
         self.worker_manager_3,
         options=None,
         reporter=reporters.get_reporter('silent'))
     self.report('Instantiated %s object.' % (type(optimiser)))
     for attr in dir(optimiser):
         if not attr.startswith('_'):
             self.report(
                 'optimiser.%s = %s' %
                 (attr, str(getattr(optimiser, attr))), 'test_result')
def random_optimise_from_args(func_caller,
                              worker_manager,
                              max_capital,
                              mode=None,
                              options=None,
                              reporter='default'):
    """ Random otpimisation from a utils.function_caller.FunctionCaller instance. """
    if options is None:
        reporter = get_reporter(reporter)
        options = load_options(random_opt_args, reporter=reporter)
        options.mode = mode
    return (RandomOptimiser(func_caller, worker_manager, options,
                            reporter)).optimise(max_capital)
Exemple #30
0
def mfgpb_from_mfoptfunc(mf_opt_func,
                         max_capital,
                         acq=None,
                         options=None,
                         reporter='default'):
    """ MF GP Bandit optimisation with an mf_func.MFOptFunction object. """
    #   if not isinstance(mf_opt_func, MFOptFunction):
    #     raise ValueError('mf_opt_func should be a mf_func.MFOptFunction instance.')
    if acq is not None:
        if options is None:
            reporter = get_reporter(reporter)
            options = load_options(all_mf_gp_bandit_args, reporter=reporter)
        options.acq = acq
    return (MFGPBandit(mf_opt_func, options, reporter)).optimise(max_capital)