target_directions=["N"],
                                             input_colors=["2500"],
                                             target_colors=["6500"])
train_dataloader = DataLoader(train_dataset,
                              batch_size=TRAIN_BATCH_SIZE,
                              shuffle=True,
                              num_workers=TRAIN_NUM_WORKERS)
test_dataloader = DataLoader(test_dataset,
                             batch_size=TEST_BATCH_SIZE,
                             shuffle=True,
                             num_workers=TEST_NUM_WORKERS)
print(f'Dataset contains {len(train_dataset)}+{len(test_dataset)} samples.')
print(f'Running for {TRAIN_DURATION} batches.')

# Configure tensorboard
writer = tensorboard.setup_summary_writer(NAME)
tensorboard_process = tensorboard.start_tensorboard_process()
SHOWN_SAMPLES = 3
TESTING_FREQ = 100  # every how many batches model is tested and tensorboard is updated
TESTING_BATCHES = 10  # how many batches for testing
print(
    f'{SHOWN_SAMPLES} samples will be visualized every {TESTING_FREQ} batches.'
)

# Train loop
train_generator_loss, train_discriminator_loss, train_score = 0., 0., 0.
test_dataloader_iter = iter(test_dataloader)
train_dataloader_iter = iter(train_dataloader)
train_batches_counter = 0
while train_batches_counter < TRAIN_DURATION:
Exemple #2
0
def main(config):
    # Device to use
    device = setup_device(config["gpus"])

    # Configure training objects
    # Generator
    model_name = config["model"]
    generator = get_generator_model(model_name)().to(device)
    weight_decay = config["L2_regularization_generator"]
    if config["use_illumination_predicter"]:
        light_latent_size = get_light_latent_size(model_name)
        illumination_predicter = IlluminationPredicter(
            in_size=light_latent_size).to(device)
        optimizerG = torch.optim.Adam(
            list(generator.parameters()) +
            list(illumination_predicter.parameters()),
            weight_decay=weight_decay)
    else:
        optimizerG = torch.optim.Adam(generator.parameters(),
                                      weight_decay=weight_decay)
    # Discriminator
    if config["use_discriminator"]:
        if config["discriminator_everything_as_input"]:
            raise NotImplementedError  # TODO
        else:
            discriminator = NLayerDiscriminator().to(device)
        optimizerD = torch.optim.Adam(
            discriminator.parameters(),
            weight_decay=config["L2_regularization_discriminator"])

    # Losses
    reconstruction_loss = ReconstructionLoss().to(device)
    if config["use_illumination_predicter"]:
        color_prediction_loss = ColorPredictionLoss().to(device)
        direction_prediction_loss = DirectionPredictionLoss().to(device)
    if config["use_discriminator"]:
        gan_loss = GANLoss().to(device)
        fool_gan_loss = FoolGANLoss().to(device)

    # Metrics
    if "scene_latent" in config["metrics"]:
        scene_latent_loss = SceneLatentLoss().to(device)
    if "light_latent" in config["metrics"]:
        light_latent_loss = LightLatentLoss().to(device)
    if "LPIPS" in config["metrics"]:
        lpips_loss = LPIPS(
            net_type=
            'alex',  # choose a network type from ['alex', 'squeeze', 'vgg']
            version='0.1'  # Currently, v0.1 is supported
        ).to(device)

    # Configure dataloader
    size = config['image_resize']
    # train
    try:
        file = open(
            'traindataset' + str(config['overfit_test']) + str(size) +
            '.pickle', 'rb')
        print("Restoring train dataset from pickle file")
        train_dataset = pickle.load(file)
        file.close()
        print("Restored train dataset from pickle file")
    except:
        train_dataset = InputTargetGroundtruthDataset(
            transform=transforms.Resize(size),
            data_path=TRAIN_DATA_PATH,
            locations=['scene_abandonned_city_54']
            if config['overfit_test'] else None,
            input_directions=["S", "E"] if config['overfit_test'] else None,
            target_directions=["S", "E"] if config['overfit_test'] else None,
            input_colors=["2500", "6500"] if config['overfit_test'] else None,
            target_colors=["2500", "6500"] if config['overfit_test'] else None)
        file = open(
            "traindataset" + str(config['overfit_test']) + str(size) +
            '.pickle', 'wb')
        pickle.dump(train_dataset, file)
        file.close()
        print("saved traindataset" + str(config['overfit_test']) + str(size) +
              '.pickle')
    train_dataloader = DataLoader(train_dataset,
                                  batch_size=config['train_batch_size'],
                                  shuffle=config['shuffle_data'],
                                  num_workers=config['train_num_workers'])
    # test
    try:
        file = open(
            "testdataset" + str(config['overfit_test']) + str(size) +
            '.pickle', 'rb')
        print("Restoring full test dataset from pickle file")
        test_dataset = pickle.load(file)
        file.close()
        print("Restored full test dataset from pickle file")
    except:
        test_dataset = InputTargetGroundtruthDataset(
            transform=transforms.Resize(size),
            data_path=VALIDATION_DATA_PATH,
            locations=["scene_city_24"] if config['overfit_test'] else None,
            input_directions=["S", "E"] if config['overfit_test'] else None,
            target_directions=["S", "E"] if config['overfit_test'] else None,
            input_colors=["2500", "6500"] if config['overfit_test'] else None,
            target_colors=["2500", "6500"] if config['overfit_test'] else None)
        file = open(
            "testdataset" + str(config['overfit_test']) + str(size) +
            '.pickle', 'wb')
        pickle.dump(test_dataset, file)
        file.close()
        print("saved testdataset" + str(config['overfit_test']) + str(size) +
              '.pickle')
    test_dataloader = DataLoader(test_dataset,
                                 batch_size=config['test_batch_size'],
                                 shuffle=config['shuffle_data'],
                                 num_workers=config['test_num_workers'])
    test_dataloaders = {"full": test_dataloader}
    if config["testing_on_subsets"]:
        additional_pairing_strategies = [[SameLightColor()],
                                         [SameLightDirection()]]
        #[SameScene()],
        #[SameScene(), SameLightColor()],
        #[SameScene(), SameLightDirection()],
        #[SameLightDirection(), SameLightColor()],
        #[SameScene(), SameLightDirection(), SameLightColor()]]
        for pairing_strategies in additional_pairing_strategies:
            try:
                file = open(
                    "testdataset" + str(config['overfit_test']) + str(size) +
                    str(pairing_strategies) + '.pickle', 'rb')
                print("Restoring test dataset " + str(pairing_strategies) +
                      " from pickle file")
                test_dataset = pickle.load(file)
                file.close()
                print("Restored test dataset " + str(pairing_strategies) +
                      " from pickle file")
            except:
                test_dataset = InputTargetGroundtruthDataset(
                    transform=transforms.Resize(size),
                    data_path=VALIDATION_DATA_PATH,
                    pairing_strategies=pairing_strategies,
                    locations=["scene_city_24"]
                    if config['overfit_test'] else None,
                    input_directions=["S", "E"]
                    if config['overfit_test'] else None,
                    target_directions=["S", "E"]
                    if config['overfit_test'] else None,
                    input_colors=["2500", "6500"]
                    if config['overfit_test'] else None,
                    target_colors=["2500", "6500"]
                    if config['overfit_test'] else None)
                file = open(
                    "testdataset" + str(config['overfit_test']) + str(size) +
                    str(pairing_strategies) + '.pickle', 'wb')
                pickle.dump(test_dataset, file)
                file.close()
                print("saved testdataset" + str(config['overfit_test']) +
                      str(size) + str(pairing_strategies) + '.pickle')
            test_dataloader = DataLoader(
                test_dataset,
                batch_size=config['test_batch_size'],
                shuffle=config['shuffle_data'],
                num_workers=config['test_num_workers'])
            test_dataloaders[str(pairing_strategies)] = test_dataloader
    print(
        f'Dataset contains {len(train_dataset)} train samples and {len(test_dataset)} test samples.'
    )
    print(
        f'{config["shown_samples_grid"]} samples will be visualized every {config["testing_frequence"]} batches.'
    )
    print(
        f'Evaluation will be made every {config["testing_frequence"]} batches on {config["batches_for_testing"]} batches'
    )

    # Configure tensorboard
    writer = tensorboard.setup_summary_writer(config['name'])
    tensorboard_process = tensorboard.start_tensorboard_process(
    )  # TODO: config["tensorboard_port"]

    # Train loop

    # Init train scalars
    (train_generator_loss, train_discriminator_loss, train_score, train_lpips,
     train_ssim, train_psnr, train_scene_latent_loss_input_gt,
     train_scene_latent_loss_input_target, train_scene_latent_loss_gt_target,
     train_light_latent_loss_input_gt, train_light_latent_loss_input_target,
     train_light_latent_loss_gt_target, train_color_prediction_loss,
     train_direction_prediction_loss) = (0., 0., 0., 0., 0., 0., 0., 0., 0.,
                                         0., 0., 0., 0., 0.)

    # Init train loop
    train_dataloader_iter = iter(train_dataloader)
    train_batches_counter = 0
    print(f'Running for {config["train_duration"]} batches.')

    last_save_t = 0
    # Train loop
    while train_batches_counter < config['train_duration']:
        # Store trained model
        t = time.time()
        if t - last_save_t > config["checkpoint_period"]:
            last_save_t = t
            save_trained(generator, "generator" + config['name'] + str(t))
            if config["use_illumination_predicter"]:
                save_trained(
                    illumination_predicter,
                    "illumination_predicter" + config['name'] + str(t))
            if config["use_discriminator"]:
                save_trained(discriminator,
                             "discriminator" + config['name'] + str(t))

        #with torch.autograd.detect_anomaly():
        # Load batch
        if config["debug"]: print('Load batch', get_gpu_memory_map())
        with torch.no_grad():
            train_batch, train_dataloader_iter = next_batch(
                train_dataloader_iter, train_dataloader)
            (input_image, target_image, groundtruth_image, input_color,
             target_color, groundtruth_color, input_direction,
             target_direction,
             groundtruth_direction) = extract_from_batch(train_batch, device)

        # Generator
        # Generator: Forward
        if config["debug"]:
            print('Generator: Forward', get_gpu_memory_map())
        output = generator(input_image, target_image, groundtruth_image)
        (relit_image, input_light_latent, target_light_latent,
         groundtruth_light_latent, input_scene_latent, target_scene_latent,
         groundtruth_scene_latent) = output
        r = reconstruction_loss(relit_image, groundtruth_image)
        generator_loss = config['generator_loss_reconstruction_l2_factor'] * r
        if config["use_illumination_predicter"]:
            input_illumination = illumination_predicter(input_light_latent)
            target_illumination = illumination_predicter(target_light_latent)
            groundtruth_illumination = illumination_predicter(
                groundtruth_light_latent)
            c = (1 / 3 *
                 color_prediction_loss(input_illumination[:, 0], input_color) +
                 1 / 3 *
                 color_prediction_loss(target_illumination[:, 0], target_color)
                 + 1 / 3 * color_prediction_loss(
                     groundtruth_illumination[:, 0], groundtruth_color))
            d = (1 / 3 * direction_prediction_loss(input_illumination[:, 1],
                                                   input_direction) +
                 1 / 3 * direction_prediction_loss(target_illumination[:, 1],
                                                   target_direction) +
                 1 / 3 * direction_prediction_loss(
                     groundtruth_illumination[:, 1], groundtruth_direction))
            generator_loss += config['generator_loss_color_l2_factor'] * c
            generator_loss += config['generator_loss_direction_l2_factor'] * d
            train_color_prediction_loss += c.item()
            train_direction_prediction_loss += d.item()
        train_generator_loss += generator_loss.item()
        train_score += reconstruction_loss(
            input_image, groundtruth_image).item() / reconstruction_loss(
                relit_image, groundtruth_image).item()
        if "scene_latent" in config["metrics"]:
            train_scene_latent_loss_input_gt += scene_latent_loss(
                input_image, groundtruth_image).item()
            train_scene_latent_loss_input_target += scene_latent_loss(
                input_image, target_image).item()
            train_scene_latent_loss_gt_target += scene_latent_loss(
                target_image, groundtruth_image).item()
        if "light_latent" in config["metrics"]:
            train_light_latent_loss_input_gt += light_latent_loss(
                input_image, groundtruth_image).item()
            train_light_latent_loss_input_target += light_latent_loss(
                input_image, target_image).item()
            train_light_latent_loss_gt_target += light_latent_loss(
                target_image, groundtruth_image).item()
        if "LPIPS" in config["metrics"]:
            train_lpips += lpips_loss(relit_image, groundtruth_image).item()
        if "SSIM" in config["metrics"]:
            train_ssim += ssim(relit_image, groundtruth_image).item()
        if "PSNR" in config["metrics"]:
            train_psnr += psnr(relit_image, groundtruth_image).item()

        # Generator: Backward
        if config["debug"]:
            print('Generator: Backward', get_gpu_memory_map())
        optimizerG.zero_grad()
        if config["use_discriminator"]:
            optimizerD.zero_grad()
        if config["use_discriminator"]:
            discriminator.zero_grad()
        generator_loss.backward(
        )  # use requires_grad = False for speed? Et pour enlever ces zero_grad en double!
        # Generator: Update parameters
        if config["debug"]:
            print('Generator: Update parameters', get_gpu_memory_map())
        optimizerG.step()

        # Discriminator
        if config["use_discriminator"]:
            if config["debug"]:
                print('Discriminator', get_gpu_memory_map())
            # Discriminator : Forward
            output = generator(input_image, target_image, groundtruth_image)
            (relit_image, input_light_latent, target_light_latent,
             groundtruth_light_latent, input_scene_latent, target_scene_latent,
             groundtruth_scene_latent) = output
            disc_out_fake = discriminator(relit_image)
            disc_out_real = discriminator(groundtruth_image)
            discriminator_loss = config[
                'discriminator_loss_gan_factor'] * gan_loss(
                    disc_out_fake, disc_out_real)
            train_discriminator_loss += discriminator_loss.item()
            # Discriminator : Backward
            optimizerD.zero_grad()
            discriminator.zero_grad()
            optimizerG.zero_grad()
            generator.zero_grad()
            discriminator_loss.backward()
            generator.zero_grad()
            optimizerG.zero_grad()
            # Discriminator : Update parameters
            optimizerD.step()

        # Update train_batches_counter
        train_batches_counter += 1

        # If it is time to do so, test and visualize current progress
        step, modulo = divmod(train_batches_counter,
                              config['testing_frequence'])
        if modulo == 0:
            with torch.no_grad():

                # Visualize train
                if config["debug"]:
                    print('Visualize train', get_gpu_memory_map())
                write_images(
                    writer=writer,
                    header="Train",
                    step=step,
                    inputs=input_image[:config['shown_samples_grid']],
                    input_light_latents=input_light_latent[:config[
                        'shown_samples_grid']],
                    targets=target_image[:config['shown_samples_grid']],
                    target_light_latents=target_light_latent[:config[
                        'shown_samples_grid']],
                    groundtruths=groundtruth_image[:config[
                        'shown_samples_grid']],
                    groundtruth_light_latents=groundtruth_light_latent[:config[
                        'shown_samples_grid']],
                    relits=relit_image[:config['shown_samples_grid']])
                write_measures(
                    writer=writer,
                    header="Train",
                    step=step,
                    generator_loss=train_generator_loss /
                    config['testing_frequence'],
                    discriminator_loss=train_discriminator_loss /
                    config['testing_frequence'],
                    score=train_score / config['testing_frequence'],
                    ssim=train_ssim / config['testing_frequence'],
                    lpips=train_lpips / config['testing_frequence'],
                    psnr=train_psnr / config['testing_frequence'],
                    scene_input_gt=train_scene_latent_loss_input_gt /
                    config['testing_frequence'],
                    scene_input_target=train_scene_latent_loss_input_target /
                    config['testing_frequence'],
                    scene_gt_target=train_scene_latent_loss_gt_target /
                    config['testing_frequence'],
                    light_input_gt=train_light_latent_loss_input_gt /
                    config['testing_frequence'],
                    light_input_target=train_light_latent_loss_input_target /
                    config['testing_frequence'],
                    light_gt_target=train_light_latent_loss_gt_target /
                    config['testing_frequence'],
                    color_prediction=train_color_prediction_loss /
                    config['testing_frequence'],
                    direction_prediction=train_direction_prediction_loss /
                    config['testing_frequence'])
                print('Train', 'Loss:',
                      train_generator_loss / config['testing_frequence'],
                      'Score:', train_score / config['testing_frequence'])
                if config["debug_memory"]:
                    print(get_gpu_memory_map())
                    # del generator_loss
                    # torch.cuda.empty_cache()
                    # print(get_gpu_memory_map())

                # Reset train scalars
                if config["debug"]:
                    print('Reset train scalars', get_gpu_memory_map())
                (train_generator_loss, train_discriminator_loss, train_score,
                 train_lpips, train_ssim, train_psnr,
                 train_scene_latent_loss_input_gt,
                 train_scene_latent_loss_input_target,
                 train_scene_latent_loss_gt_target,
                 train_light_latent_loss_input_gt,
                 train_light_latent_loss_input_target,
                 train_light_latent_loss_gt_target,
                 train_color_prediction_loss,
                 train_direction_prediction_loss) = (0., 0., 0., 0., 0., 0.,
                                                     0., 0., 0., 0., 0., 0.,
                                                     0., 0.)

                # Test loop

                if config["debug"]: print('Test loop', get_gpu_memory_map())
                for header, test_dataloader in test_dataloaders.items():

                    # Init test scalars
                    if config["debug"]:
                        print('Init test scalars', get_gpu_memory_map())
                    (test_generator_loss, test_discriminator_loss, test_score,
                     test_lpips, test_ssim, test_psnr,
                     test_scene_latent_loss_input_gt,
                     test_scene_latent_loss_input_target,
                     test_scene_latent_loss_gt_target,
                     test_light_latent_loss_input_gt,
                     test_light_latent_loss_input_target,
                     test_light_latent_loss_gt_target,
                     test_color_prediction_loss,
                     test_direction_prediction_loss) = (0., 0., 0., 0., 0., 0.,
                                                        0., 0., 0., 0., 0., 0.,
                                                        0., 0.)

                    # Init test loop
                    if config["debug"]:
                        print('Init test loop', get_gpu_memory_map())
                    test_dataloader_iter = iter(test_dataloader)
                    testing_batches_counter = 0

                    while testing_batches_counter < config[
                            'batches_for_testing']:

                        # Load batch
                        if config["debug"]:
                            print('Load batch', get_gpu_memory_map())
                        test_batch, test_dataloader_iter = next_batch(
                            test_dataloader_iter, test_dataloader)
                        (input_image, target_image, groundtruth_image,
                         input_color, target_color, groundtruth_color,
                         input_direction, target_direction,
                         groundtruth_direction) = extract_from_batch(
                             test_batch, device)

                        # Forward

                        # Generator
                        if config["debug"]:
                            print('Generator', get_gpu_memory_map())
                        output = generator(input_image, target_image,
                                           groundtruth_image)
                        (relit_image, input_light_latent, target_light_latent,
                         groundtruth_light_latent, input_scene_latent,
                         target_scene_latent,
                         groundtruth_scene_latent) = output
                        r = reconstruction_loss(relit_image, groundtruth_image)
                        generator_loss = config[
                            'generator_loss_reconstruction_l2_factor'] * r
                        if config["use_illumination_predicter"]:
                            input_illumination = illumination_predicter(
                                input_light_latent)
                            target_illumination = illumination_predicter(
                                target_light_latent)
                            groundtruth_illumination = illumination_predicter(
                                groundtruth_light_latent)
                            c = (1 / 3 * color_prediction_loss(
                                input_illumination[:, 0], input_color) +
                                 1 / 3 * color_prediction_loss(
                                     target_illumination[:, 0], target_color) +
                                 1 / 3 * color_prediction_loss(
                                     groundtruth_illumination[:, 0],
                                     groundtruth_color))
                            d = (1 / 3 * direction_prediction_loss(
                                input_illumination[:, 1], input_direction) +
                                 1 / 3 * direction_prediction_loss(
                                     target_illumination[:, 1],
                                     target_direction) +
                                 1 / 3 * direction_prediction_loss(
                                     groundtruth_illumination[:, 1],
                                     groundtruth_direction))
                            generator_loss += config[
                                'generator_loss_color_l2_factor'] * c
                            generator_loss += config[
                                'generator_loss_direction_l2_factor'] * d
                            test_color_prediction_loss += c.item()
                            test_direction_prediction_loss += d.item()
                        test_generator_loss += generator_loss.item()
                        test_score += reconstruction_loss(
                            input_image,
                            groundtruth_image).item() / reconstruction_loss(
                                relit_image, groundtruth_image).item()
                        if "scene_latent" in config["metrics"]:
                            test_scene_latent_loss_input_gt += scene_latent_loss(
                                input_image, groundtruth_image).item()
                            test_scene_latent_loss_input_target += scene_latent_loss(
                                input_image, target_image).item()
                            test_scene_latent_loss_gt_target += scene_latent_loss(
                                target_image, groundtruth_image).item()
                        if "light_latent" in config["metrics"]:
                            test_light_latent_loss_input_gt += light_latent_loss(
                                input_image, groundtruth_image).item()
                            test_light_latent_loss_input_target += light_latent_loss(
                                input_image, target_image).item()
                            test_light_latent_loss_gt_target += light_latent_loss(
                                target_image, groundtruth_image).item()
                        if "LPIPS" in config["metrics"]:
                            test_lpips += lpips_loss(relit_image,
                                                     groundtruth_image).item()
                        if "SSIM" in config["metrics"]:
                            test_ssim += ssim(relit_image,
                                              groundtruth_image).item()
                        if "PSNR" in config["metrics"]:
                            test_psnr += psnr(relit_image,
                                              groundtruth_image).item()

                        # Discriminator
                        if config["debug"]:
                            print('Discriminator', get_gpu_memory_map())
                        if config["use_discriminator"]:
                            disc_out_fake = discriminator(relit_image)
                            disc_out_real = discriminator(groundtruth_image)
                            discriminator_loss = config[
                                'discriminator_loss_gan_factor'] * gan_loss(
                                    disc_out_fake, disc_out_real)
                            test_discriminator_loss += discriminator_loss.item(
                            )

                        # Update testing_batches_counter
                        if config["debug"]:
                            print('Update testing_batches_counter',
                                  get_gpu_memory_map())
                        testing_batches_counter += 1

                    # Visualize test
                    if config["debug"]:
                        print('Visualize test', get_gpu_memory_map())
                    write_images(
                        writer=writer,
                        header="Test-" + header,
                        step=step,
                        inputs=input_image[:config['shown_samples_grid']],
                        input_light_latents=input_light_latent[:config[
                            'shown_samples_grid']],
                        targets=target_image[:config['shown_samples_grid']],
                        target_light_latents=target_light_latent[:config[
                            'shown_samples_grid']],
                        groundtruths=groundtruth_image[:config[
                            'shown_samples_grid']],
                        groundtruth_light_latents=
                        groundtruth_light_latent[:
                                                 config['shown_samples_grid']],
                        relits=relit_image[:config['shown_samples_grid']])
                    write_measures(
                        writer=writer,
                        header="Test-" + header,
                        step=step,
                        generator_loss=test_generator_loss /
                        config['batches_for_testing'],
                        discriminator_loss=test_discriminator_loss /
                        config['batches_for_testing'],
                        score=test_score / config['batches_for_testing'],
                        ssim=test_ssim / config['batches_for_testing'],
                        lpips=test_lpips / config['batches_for_testing'],
                        psnr=test_psnr / config['batches_for_testing'],
                        scene_input_gt=test_scene_latent_loss_input_gt /
                        config['batches_for_testing'],
                        scene_input_target=test_scene_latent_loss_input_target
                        / config['batches_for_testing'],
                        scene_gt_target=test_scene_latent_loss_gt_target /
                        config['batches_for_testing'],
                        light_input_gt=test_light_latent_loss_input_gt /
                        config['batches_for_testing'],
                        light_input_target=test_light_latent_loss_input_target
                        / config['batches_for_testing'],
                        light_gt_target=test_light_latent_loss_gt_target /
                        config['batches_for_testing'],
                        color_prediction=test_color_prediction_loss /
                        config['batches_for_testing'],
                        direction_prediction=test_direction_prediction_loss /
                        config['batches_for_testing'])
                    print('Test-' + header, 'Loss:',
                          test_generator_loss / config['testing_frequence'],
                          'Score:', test_score / config['testing_frequence'])

                    if config["debug_memory"]:
                        print(get_gpu_memory_map())