def main(): opt = Config() if opt.if_real_data: opt.max_seq_len, opt.vocab_size = text_process('data/' + opt.dataset + '.txt') opt.extend_vocab_size = len(load_test_dict( opt.dataset)[0]) # init classifier vocab_size inst = SeqGANInstructor(opt) inst._run()
parser.add_argument('--signal_file', default=cfg.signal_file, type=str) parser.add_argument('--tips', default=cfg.tips, type=str) return parser # MAIN if __name__ == '__main__': # Hyper Parameters parser = argparse.ArgumentParser() parser = program_config(parser) opt = parser.parse_args() if opt.if_real_data: print("Real data is being used") opt.max_seq_len, opt.vocab_size = text_process('dataset/' + opt.dataset + '.txt') cfg.extend_vocab_size = len(load_test_dict(opt.dataset)[0]) # init classifier vocab_size cfg.init_param(opt) opt.save_root = cfg.save_root opt.train_data = cfg.train_data opt.test_data = cfg.test_data # ===Dict=== if cfg.if_real_data: from instructor.real_data.seqgan_instructor import SeqGANInstructor from instructor.real_data.leakgan_instructor import LeakGANInstructor from instructor.real_data.maligan_instructor import MaliGANInstructor from instructor.real_data.jsdgan_instructor import JSDGANInstructor from instructor.real_data.dpgan_instructor import DPGANInstructor from instructor.real_data.sa_dpgan_instructor import SADPGANInstructor from instructor.real_data.relgan_instructor import RelGANInstructor