def main():

    trained_model = cfg.trained_model
    thresh = 0.5
    image_dir = '/home/cory/cedl/vid/videos/vid04'

    net = Darknet19()
    net_utils.load_net(trained_model, net)
    net.eval()
    net.cuda()
    print('load model successfully')
    print(net)

    image_extensions = ['.jpg', '.JPG', '.png', '.PNG']
    image_abs_paths = sorted([
        os.path.join(image_dir, name) for name in os.listdir(image_dir)
        if name[-4:] in image_extensions
    ])

    t_det = Timer()
    t_total = Timer()

    for i, image_path in enumerate(image_abs_paths):
        t_total.tic()
        image, im_data = preprocess(image_path)
        im_data = net_utils.np_to_variable(im_data,
                                           is_cuda=True,
                                           volatile=True).permute(0, 3, 1, 2)
        t_det.tic()
        bbox_pred, iou_pred, prob_pred = net.forward(im_data)
        det_time = t_det.toc()
        # to numpy
        bbox_pred = bbox_pred.data.cpu().numpy()
        iou_pred = iou_pred.data.cpu().numpy()
        prob_pred = prob_pred.data.cpu().numpy()

        # print bbox_pred.shape, iou_pred.shape, prob_pred.shape

        bboxes, scores, cls_inds = yolo_utils.postprocess(
            bbox_pred, iou_pred, prob_pred, image.shape, cfg, thresh)

        im2show = yolo_utils.draw_detection(image, bboxes, scores, cls_inds,
                                            cfg)

        if im2show.shape[0] > 1100:
            im2show = cv2.resize(im2show, (int(
                1000. * float(im2show.shape[1]) / im2show.shape[0]), 1000))
        cv2.imshow('test', im2show)

        total_time = t_total.toc()
        format_str = 'frame: %d, (detection: %.1f fps, %.1f ms) (total: %.1f fps, %.1f ms)'
        print(format_str % (i, 1. / det_time, det_time * 1000, 1. / total_time,
                            total_time * 1000))

        t_det.clear()
        t_total.clear()

        key = cv2.waitKey(1)
        if key == ord('q'):
            break
Exemple #2
0
    # print bbox_pred.shape, iou_pred.shape, prob_pred.shape

    bboxes, scores, cls_inds = yolo_utils.postprocess(
        bbox_pred, iou_pred, prob_pred, image.shape, cfg, thresh)

    im2show = yolo_utils.draw_detection(image, bboxes, scores, cls_inds, cfg)

    if im2show.shape[0] > 1100:
        im2show = cv2.resize(im2show,
                             (int(1000. *
                                  float(im2show.shape[1]) / im2show.shape[0]),
                              1000))
    cv2.imshow('test', im2show)

    total_time = t_total.toc()
    # wait_time = max(int(60 - total_time * 1000), 1)
    cv2.waitKey(0)

    if i % 1 == 0:
        format_str = 'frame: %d, ' \
                     '(detection: %.1f Hz, %.1f ms) ' \
                     '(total: %.1f Hz, %.1f ms)'
        print((format_str % (
            i,
            1. / det_time, det_time * 1000,
            1. / total_time, total_time * 1000)))

        t_total.clear()
        t_det.clear()
Exemple #3
0
            bboxes, scores, cls_inds = yolo_utils.postprocess(
                bbox_pred,
                iou_pred,
                prob_pred,
                image.shape,
                cfg,
                thresh=0.3,
                size_index=size_index)
            im2show = yolo_utils.draw_detection(image, bboxes, scores,
                                                cls_inds, cfg)
            summary_writer.add_image('predict', im2show, step)

        train_loss = 0
        bbox_loss, iou_loss, cls_loss = 0., 0., 0.
        cnt = 0
        t.clear()
        size_index = randint(0, len(cfg.multi_scale_inp_size) - 1)
        print("image_size {}".format(cfg.multi_scale_inp_size[size_index]))

    if step > 0 and (step % imdb.batch_per_epoch == 0):
        if imdb.epoch in cfg.lr_decay_epochs:
            lr *= cfg.lr_decay
            optimizer = torch.optim.SGD(net.parameters(),
                                        lr=lr,
                                        momentum=cfg.momentum,
                                        weight_decay=cfg.weight_decay)

        save_name = os.path.join(cfg.train_output_dir,
                                 '{}_{}.h5'.format(cfg.exp_name, imdb.epoch))
        net_utils.save_net(save_name, net)
        print(('save model: {}'.format(save_name)))
def run_detection(im_root, result_root, conf_threshold):
    # get symbol
    pprint.pprint(config)
    config.symbol = 'resnet_v1_101_rfcn_dcn' if not args.rfcn_only else 'resnet_v1_101_rfcn'
    sym_instance = eval(config.symbol + '.' + config.symbol)()
    sym = sym_instance.get_symbol(config, is_train=False)

    # set up class names
    num_classes = 81
    classes = [
        'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train',
        'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign',
        'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep',
        'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella',
        'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard',
        'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard',
        'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork',
        'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange',
        'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair',
        'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv',
        'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave',
        'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase',
        'scissors', 'teddy bear', 'hair drier', 'toothbrush'
    ]

    print('detection in {}'.format(im_root))
    im_names = sorted(os.listdir(im_root))

    # get predictor
    data_names = ['data', 'im_info']
    label_names = []
    data = []
    for idx, im_name in enumerate(im_names[:2]):
        im_file = os.path.join(im_root, im_name)
        im = cv2.imread(im_file,
                        cv2.IMREAD_COLOR | cv2.IMREAD_IGNORE_ORIENTATION)

        target_size = config.SCALES[0][0]
        max_size = config.SCALES[0][1]
        im, im_scale = resize(im,
                              target_size,
                              max_size,
                              stride=config.network.IMAGE_STRIDE)
        im_tensor = transform(im, config.network.PIXEL_MEANS)
        im_info = np.array(
            [[im_tensor.shape[2], im_tensor.shape[3], im_scale]],
            dtype=np.float32)

        data.append({'data': im_tensor, 'im_info': im_info})

    data = [[mx.nd.array(data[i][name]) for name in data_names]
            for i in xrange(len(data))]
    max_data_shape = [[('data', (1, 3, max([v[0] for v in config.SCALES]),
                                 max([v[1] for v in config.SCALES])))]]
    provide_data = [[(k, v.shape) for k, v in zip(data_names, data[i])]
                    for i in xrange(len(data))]
    provide_label = [None for i in xrange(len(data))]

    arg_params, aux_params = load_param(
        cur_path + '/../model/' +
        ('rfcn_dcn_coco' if not args.rfcn_only else 'rfcn_coco'),
        config.TEST.test_epoch,
        process=True)
    predictor = Predictor(sym,
                          data_names,
                          label_names,
                          context=[mx.gpu(0)],
                          max_data_shapes=max_data_shape,
                          provide_data=provide_data,
                          provide_label=provide_label,
                          arg_params=arg_params,
                          aux_params=aux_params)
    # nms = gpu_nms_wrapper(config.TEST.NMS, 0)
    # nms = soft_nms_wrapper(config.TEST.NMS, method=2)
    nms = gpu_soft_nms_wrapper(config.TEST.NMS, method=2, device_id=0)

    nms_t = Timer()
    for idx, im_name in enumerate(im_names):
        im_file = os.path.join(im_root, im_name)
        im = cv2.imread(im_file,
                        cv2.IMREAD_COLOR | cv2.IMREAD_IGNORE_ORIENTATION)
        origin_im = im.copy()

        target_size = config.SCALES[0][0]
        max_size = config.SCALES[0][1]
        im, im_scale = resize(im,
                              target_size,
                              max_size,
                              stride=config.network.IMAGE_STRIDE)
        im_tensor = transform(im, config.network.PIXEL_MEANS)
        im_info = np.array(
            [[im_tensor.shape[2], im_tensor.shape[3], im_scale]],
            dtype=np.float32)

        # input
        data = [mx.nd.array(im_tensor), mx.nd.array(im_info)]
        data_batch = mx.io.DataBatch(data=[data],
                                     label=[],
                                     pad=0,
                                     index=idx,
                                     provide_data=[[
                                         (k, v.shape)
                                         for k, v in zip(data_names, data)
                                     ]],
                                     provide_label=[None])
        scales = [
            data_batch.data[i][1].asnumpy()[0, 2]
            for i in xrange(len(data_batch.data))
        ]

        tic()
        scores, boxes, data_dict = im_detect(predictor, data_batch, data_names,
                                             scales, config)
        boxes = boxes[0].astype('f')
        scores = scores[0].astype('f')
        dets_nms = []
        for j in range(1, scores.shape[1]):
            cls_scores = scores[:, j, np.newaxis]
            cls_boxes = boxes[:,
                              4:8] if config.CLASS_AGNOSTIC else boxes[:, j *
                                                                       4:(j +
                                                                          1) *
                                                                       4]
            cls_dets = np.hstack((cls_boxes, cls_scores))
            nms_t.tic()
            keep = nms(cls_dets)
            nms_t.toc()
            cls_dets = cls_dets[keep, :]
            cls_dets = cls_dets[cls_dets[:, -1] > 0.7, :]
            dets_nms.append(cls_dets)
        print 'testing {} {:.2f}ms'.format(im_name, toc() * 1000)
        print 'nms: {:.2f}ms'.format(nms_t.total_time * 1000)
        nms_t.clear()

        # save results
        person_dets = dets_nms[0]
        with open(os.path.join(result_root, '{:04d}.txt'.format(idx)),
                  'w') as f:
            f.write('{}\n'.format(len(person_dets)))
            for det in person_dets:
                x1, y1, x2, y2, s = det
                w = x2 - x1
                h = y2 - y1
                f.write('0 {} {} {} {} {}\n'.format(s, w, h, x1, y1))

        # visualize
        im = origin_im
        # im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
        im = show_boxes_cv2(im, dets_nms, classes, 1)

        cv2.imshow('det', im)
        cv2.waitKey(1)
Exemple #5
0
    net.loss.backward()
    optimizer.step()

    duration = timer.toc()
    if step % cfg.disp_interval == 0:
        train_loss /= cnt
        bbox_loss /= cnt
        iou_loss /= cnt
        cls_loss /= cnt
        progress_in_epoch = (step % imdb.batch_per_epoch) / imdb.batch_per_epoch
        print('epoch: %d, step: %d (%.2f %%),'
              'loss: %.3f, bbox_loss: %.3f, iou_loss: %.3f, cls_loss: %.3f (%.2f s/batch)' % (
                  imdb.epoch, step, progress_in_epoch * 100, train_loss, bbox_loss, iou_loss, cls_loss, duration))
        with open(cfg.log_file, 'a+') as log:
            log.write('%d, %d, %.3f, %.3f, %.3f, %.3f, %.2f\n' % (
                imdb.epoch, step, train_loss, bbox_loss, iou_loss, cls_loss, duration))

        if use_tensorboard and step % cfg.log_interval == 0:
            exp.add_scalar_value('loss_train', train_loss, step=step)
            exp.add_scalar_value('loss_bbox', bbox_loss, step=step)
            exp.add_scalar_value('loss_iou', iou_loss, step=step)
            exp.add_scalar_value('loss_cls', cls_loss, step=step)
            exp.add_scalar_value('learning_rate', get_optimizer_lr(optimizer), step=step)

        train_loss = 0
        bbox_loss, iou_loss, cls_loss = 0., 0., 0.
        cnt = 0
        timer.clear()

imdb.close()
Exemple #6
0
    accuracy_epoch, twod_dists, threed_dists, test_loss_epoch = test_net(
        net2,
        imdb_cullnettest,
        dataloader_cullnettest,
        args,
        test_output_dir,
        args.image_size_index,
        args.batch_size,
        objpoints3D,
        corners_3d,
        vertices,
        thresh=args.thresh,
        vis=args.vis)

    _t.clear()

    if args.save_results_bool:
        resultsdist_dir = cfg.TEST_DIR + '/' + cfg.args.datadirname + '_topk' + str(
            args.topk) + '_nearby' + str(args.nearby_test) + '_cullnetyolov3'

        if not os.path.exists(resultsdist_dir):
            os.makedirs(resultsdist_dir)

        save_resultsdist(twod_dists, threed_dists, resultsdist_dir,
                         args.class_name)
        save_results(cfg.args.datadirname + '_topk' + str(args.topk) +
                     '_nearby' + str(args.nearby_test),
                     args.class_name,
                     accuracy_epoch[0],
                     accuracy_epoch[1],
Exemple #7
0
def main():

    output_dir = '../output'
    output_template_dir = '../output_template'
    kitti_output_dir = '../kitti_det_output'
    input_file_list = '/home/cory/project/yolo2-pytorch/train_data/kitti/kitti_val_images.txt'
    # input_file_list = '/home/cory/project/yolo2-pytorch/flow/w01_imgs.txt'
    vis_enable = False
    thresh = 0.5

    trained_model = '/home/cory/project/yolo2-pytorch/models/training/kitti_new_2_flow_center_ft_flownet2_joint/' \
                    'kitti_new_2_flow_center_ft_flownet2_joint_30.h5'

    shutil.rmtree(output_dir, ignore_errors=True)
    shutil.rmtree(kitti_output_dir, ignore_errors=True)
    shutil.copytree(output_template_dir, output_dir)
    os.makedirs(kitti_output_dir)

    net = Darknet19(cfg)
    net_utils.load_net(trained_model, net)
    net.eval()
    net.cuda()
    print(trained_model)
    print('load model successfully')

    img_files = open(input_file_list)
    image_abs_paths = img_files.readlines()
    image_abs_paths = [f.strip() for f in image_abs_paths]

    t_det = Timer()
    t_total = Timer()
    for i, image_path in enumerate(image_abs_paths):
        t_total.tic()
        image, im_data = preprocess(image_path)
        im_data = net_utils.np_to_variable(im_data,
                                           is_cuda=True,
                                           volatile=True).permute(0, 3, 1, 2)

        t_det.tic()
        bbox_pred, iou_pred, prob_pred = net.forward(im_data)
        det_time = t_det.toc()

        bbox_pred = bbox_pred.data.cpu().numpy()
        iou_pred = iou_pred.data.cpu().numpy()
        prob_pred = prob_pred.data.cpu().numpy()

        bboxes, scores, cls_inds = yolo_utils.postprocess(
            bbox_pred, iou_pred, prob_pred, image.shape, cfg, thresh)
        det_obj = detection_objects(bboxes, scores, cls_inds)
        save_as_kitti_format(i, det_obj, kitti_output_dir, src_label='kitti')

        total_time = t_total.toc()
        format_str = 'frame: %d, (detection: %.1f fps, %.1f ms) (total: %.1f fps, %.1f ms) %s'
        print(format_str % (i, 1. / det_time, det_time * 1000, 1. / total_time,
                            total_time * 1000, image_path))

        t_det.clear()
        t_total.clear()

        if vis_enable:
            im2show = yolo_utils.draw_detection(image, bboxes, scores,
                                                cls_inds, cfg)
            cv2.imshow('detection', im2show)
            cv2.imwrite(output_dir + '/detection/{:04d}.jpg'.format(i),
                        im2show)
            key = cv2.waitKey(0)
            if key == ord('q'):
                break
def train_main():
    choice = 1
    if choice == 0:
        dataset_yaml = '/home/cory/project/yolo2-pytorch/cfgs/config_voc.yaml'
        exp_yaml = '/home/cory/project/yolo2-pytorch/cfgs/exps/voc0712/voc0712_baseline_v3_rand.yaml'
        gpu_id = 0
    else:
        dataset_yaml = '/home/cory/project/yolo2-pytorch/cfgs/config_kitti.yaml'
        exp_yaml = '/home/cory/project/yolo2-pytorch/cfgs/exps/kitti/kitti_new_2_flow_center_ft_flownet2_joint.yaml'
        gpu_id = 1

    cfg = load_cfg_yamls([dataset_yaml, exp_yaml])

    # runtime setting
    os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu_id)
    os.makedirs(cfg['train_output_dir'], exist_ok=True)

    # data loader
    batch_size = cfg['train_batch_size']
    dataset = DetectionDataset(cfg)
    print('load dataset succeeded')
    net = Darknet19(cfg)

    start_epoch, use_model = read_ckp(cfg)

    net_utils.load_net(use_model, net)
    net.cuda()
    net.train()
    print('load net succeeded')

    # show training parameters
    print('-------------------------------')
    print('pid', os.getpid())
    print('gpu_id', os.environ.get('CUDA_VISIBLE_DEVICES'))
    print('use_model', use_model)
    print('exp_name', cfg['exp_name'])
    print('dataset', cfg['dataset_name'])
    print('optimizer', cfg['optimizer'])
    print('opt_param', cfg['opt_param'])
    print('train_batch_size', cfg['train_batch_size'])
    print('start_epoch', start_epoch)
    print('lr', lookup_lr(cfg, start_epoch))
    print('inp_size', cfg['inp_size'])
    print('inp_size_candidates', cfg['inp_size_candidates'])
    print('-------------------------------')

    timer = Timer()
    try:
        for epoch in range(start_epoch, cfg['max_epoch']):
            time_epoch_begin = time.time()
            optimizer = get_optimizer(cfg, net, epoch)
            dataloader = DataLoaderX(dataset,
                                     batch_size=batch_size,
                                     shuffle=True,
                                     num_workers=4,
                                     pin_memory=False)

            for step, data in enumerate(dataloader):
                timer.tic()
                barrier = Barrier()

                images, labels = data
                # debug_and_vis(data)

                im_data = Variable(images.cuda())
                barrier.add(1)

                bbox_pred, iou_pred, class_pred = net.forward(im_data)
                barrier.add(2)

                # build training target
                network_h = int(im_data.data.size()[2])
                network_w = int(im_data.data.size()[3])
                network_size_wh = np.array([network_w, network_h])  # (w, h)
                net_bbox_loss, net_iou_loss, net_class_loss = training_target(
                    cfg, bbox_pred, class_pred, labels, network_size_wh,
                    iou_pred)
                barrier.add(3)

                # backward
                optimizer.zero_grad()
                net_loss = net_bbox_loss + net_iou_loss + net_class_loss
                net_loss.backward()
                optimizer.step()
                barrier.add(4)

                duration = timer.toc()
                if step % cfg['disp_interval'] == 0:
                    # loss for this step
                    bbox_loss = net_bbox_loss.data.cpu().numpy()[0]
                    iou_loss = net_iou_loss.data.cpu().numpy()[0]
                    cls_loss = net_class_loss.data.cpu().numpy()[0]
                    train_loss = net_loss.data.cpu().numpy()[0]
                    barrier.add(5)

                    progress_in_epoch = (step + 1) * batch_size / len(dataset)
                    print(
                        'epoch %d, step %d (%.2f %%) '
                        'loss: %.3f, bbox_loss: %.3f, iou_loss: %.3f, cls_loss: %.3f (%.2f s/batch)'
                        % (epoch, step, progress_in_epoch * 100, train_loss,
                           bbox_loss, iou_loss, cls_loss, duration))
                    with open(cfg['train_output_dir'] + '/train.log',
                              'a+') as log:
                        log.write('%d, %d, %.3f, %.3f, %.3f, %.3f, %.2f\n' %
                                  (epoch, step, train_loss, bbox_loss,
                                   iou_loss, cls_loss, duration))
                    timer.clear()
                    barrier.add(6)
                    # barrier.print()

            # epoch_done
            time_epoch_end = time.time()
            print('{:.2f} seconds for this epoch'.format(time_epoch_end -
                                                         time_epoch_begin))

            # save trained weights
            ckp_epoch = epoch + 1
            save_name = os.path.join(
                cfg['train_output_dir'],
                '{}_{}.h5'.format(cfg['exp_name'], ckp_epoch))
            net_utils.save_net(save_name, net)
            print('save model: {}'.format(save_name))

            # update check_point file
            ckp = open(
                os.path.join(cfg['train_output_dir'], 'check_point.txt'), 'w')
            ckp.write(str(ckp_epoch))
            ckp.close()

    except KeyboardInterrupt:
        exit(1)
Exemple #9
0
def main():
    # get symbol
    pprint.pprint(config)
    config.symbol = 'resnet_v1_101_rfcn_dcn' if not args.rfcn_only else 'resnet_v1_101_rfcn'
    sym_instance = eval(config.symbol + '.' + config.symbol)()
    sym = sym_instance.get_symbol(config, is_train=False)

    # set up class names
    num_classes = 81
    classes = [
        'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train',
        'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign',
        'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep',
        'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella',
        'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard',
        'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard',
        'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork',
        'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange',
        'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair',
        'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv',
        'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave',
        'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase',
        'scissors', 'teddy bear', 'hair drier', 'toothbrush'
    ]

    # load demo data
    image_names = [
        'lindau_000024_000019_leftImg8bit.png',
        'COCO_test2015_000000000891.jpg', 'COCO_test2015_000000001669.jpg'
    ]
    data = []
    for im_name in image_names:
        assert os.path.exists(cur_path + '/../demo/' + im_name), (
            '%s does not exist'.format('../demo/' + im_name))
        im = cv2.imread(cur_path + '/../demo/' + im_name,
                        cv2.IMREAD_COLOR | cv2.IMREAD_IGNORE_ORIENTATION)
        target_size = config.SCALES[0][0]
        max_size = config.SCALES[0][1]
        im, im_scale = resize(im,
                              target_size,
                              max_size,
                              stride=config.network.IMAGE_STRIDE)
        im_tensor = transform(im, config.network.PIXEL_MEANS)
        im_info = np.array(
            [[im_tensor.shape[2], im_tensor.shape[3], im_scale]],
            dtype=np.float32)
        data.append({'data': im_tensor, 'im_info': im_info})

    # get predictor
    data_names = ['data', 'im_info']
    label_names = []
    data = [[mx.nd.array(data[i][name]) for name in data_names]
            for i in xrange(len(data))]
    max_data_shape = [[('data', (1, 3, max([v[0] for v in config.SCALES]),
                                 max([v[1] for v in config.SCALES])))]]
    provide_data = [[(k, v.shape) for k, v in zip(data_names, data[i])]
                    for i in xrange(len(data))]
    provide_label = [None for i in xrange(len(data))]
    arg_params, aux_params = load_param(
        cur_path + '/../model/' +
        ('rfcn_dcn_coco' if not args.rfcn_only else 'rfcn_coco'),
        config.TEST.test_epoch,
        process=True)
    predictor = Predictor(sym,
                          data_names,
                          label_names,
                          context=[mx.gpu(0)],
                          max_data_shapes=max_data_shape,
                          provide_data=provide_data,
                          provide_label=provide_label,
                          arg_params=arg_params,
                          aux_params=aux_params)
    # nms = gpu_nms_wrapper(config.TEST.NMS, 0)
    # nms = soft_nms_wrapper(config.TEST.NMS, method=2)
    nms = gpu_soft_nms_wrapper(config.TEST.NMS, method=2, device_id=0)

    # warm up
    for j in xrange(2):
        data_batch = mx.io.DataBatch(data=[data[0]],
                                     label=[],
                                     pad=0,
                                     index=0,
                                     provide_data=[[
                                         (k, v.shape)
                                         for k, v in zip(data_names, data[0])
                                     ]],
                                     provide_label=[None])
        scales = [
            data_batch.data[i][1].asnumpy()[0, 2]
            for i in xrange(len(data_batch.data))
        ]
        scores, boxes, data_dict = im_detect(predictor, data_batch, data_names,
                                             scales, config)

    # test
    nms_t = Timer()
    for idx, im_name in enumerate(image_names):
        data_batch = mx.io.DataBatch(
            data=[data[idx]],
            label=[],
            pad=0,
            index=idx,
            provide_data=[[(k, v.shape)
                           for k, v in zip(data_names, data[idx])]],
            provide_label=[None])
        scales = [
            data_batch.data[i][1].asnumpy()[0, 2]
            for i in xrange(len(data_batch.data))
        ]

        tic()
        scores, boxes, data_dict = im_detect(predictor, data_batch, data_names,
                                             scales, config)
        boxes = boxes[0].astype('f')
        scores = scores[0].astype('f')
        dets_nms = []
        for j in range(1, scores.shape[1]):
            cls_scores = scores[:, j, np.newaxis]
            cls_boxes = boxes[:,
                              4:8] if config.CLASS_AGNOSTIC else boxes[:, j *
                                                                       4:(j +
                                                                          1) *
                                                                       4]
            cls_dets = np.hstack((cls_boxes, cls_scores))
            nms_t.tic()
            keep = nms(cls_dets)
            nms_t.toc()
            cls_dets = cls_dets[keep, :]
            cls_dets = cls_dets[cls_dets[:, -1] > 0.7, :]
            dets_nms.append(cls_dets)
        print 'testing {} {:.2f}ms'.format(im_name, toc() * 1000)
        print 'nms: {:.2f}ms'.format(nms_t.average_time * 1000)
        nms_t.clear()
        # visualize
        im = cv2.imread(cur_path + '/../demo/' + im_name)
        im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
        show_boxes(im, dets_nms, classes, 1)

    print 'done'
Exemple #10
0
def main():

    shutil.rmtree('output', ignore_errors=True)
    shutil.copytree('output_template', 'output')
    shutil.rmtree('kitti_det_output', ignore_errors=True)
    os.makedirs('kitti_det_output')

    trained_model = '/home/cory/yolo2-pytorch/models/training/kitti_new_2/kitti_new_2_100.h5'
    thresh = 0.5
    use_kitti = True
    image_dir = '/home/cory/KITTI_Dataset/data_object_image_2/training/image_2'

    net = Darknet19()
    net_utils.load_net(trained_model, net)
    net.eval()
    net.cuda()
    print('load model successfully')

    # print(net)

    def str_index(filename):
        if use_kitti:
            return filename
        begin_pos = filename.rfind('_') + 1
        end_pos = filename.rfind('.')
        str_v = filename[begin_pos:end_pos]
        return int(str_v)

    image_extensions = ['.jpg', '.JPG', '.png', '.PNG']
    img_files = open(
        '/home/cory/yolo2-pytorch/train_data/kitti/kitti_val_images.txt')
    image_abs_paths = img_files.readlines()
    image_abs_paths = [f.strip() for f in image_abs_paths]
    '''image_abs_paths = sorted([os.path.join(image_dir, name)
                              for name in os.listdir(image_dir)
                              if name[-4:] in image_extensions],
                             key=str_index)'''

    key_frame_path = ''
    detection_period = 5
    use_flow = False

    kitti_filename = 'yolo_flow_kitti_det.txt'
    try:
        os.remove(kitti_filename)
    except OSError:
        pass

    t_det = Timer()
    t_total = Timer()

    for i, image_path in enumerate(image_abs_paths):
        t_total.tic()
        image, im_data = preprocess(image_path)
        im_data = net_utils.np_to_variable(im_data,
                                           is_cuda=True,
                                           volatile=True).permute(0, 3, 1, 2)

        layer_of_flow = 'conv4'
        t_det.tic()
        bbox_pred, iou_pred, prob_pred = net.forward(im_data)

        det_time = t_det.toc()

        # to numpy
        bbox_pred = bbox_pred.data.cpu().numpy()
        iou_pred = iou_pred.data.cpu().numpy()
        prob_pred = prob_pred.data.cpu().numpy()

        # print bbox_pred.shape, iou_pred.shape, prob_pred.shape

        bboxes, scores, cls_inds = yolo_utils.postprocess(
            bbox_pred, iou_pred, prob_pred, image.shape, cfg, thresh)
        det_obj = detection_objects(bboxes, scores, cls_inds)
        save_as_kitti_format(i, det_obj, kitti_filename, src_label='kitti')

        vis_enable = False
        if vis_enable:
            im2show = yolo_utils.draw_detection(image, bboxes, scores,
                                                cls_inds, cfg)

            cv2.imshow('detection', im2show)
            cv2.imwrite('output/detection/{:04d}.jpg'.format(i), im2show)

        total_time = t_total.toc()
        format_str = 'frame: %d, (detection: %.1f fps, %.1f ms) (total: %.1f fps, %.1f ms)'
        print(format_str % (i, 1. / det_time, det_time * 1000, 1. / total_time,
                            total_time * 1000))

        t_det.clear()
        t_total.clear()

        if vis_enable:
            key = cv2.waitKey(0)
            if key == ord('q'):
                break
Exemple #11
0
def main():
    root_dir = '/home/cory/project/yolo2-pytorch'
    output_dir = root_dir + '/output'
    output_template_dir = root_dir + '/output_template'
    kitti_filename = root_dir + '/yolo_flow_kitti_det.txt'

    shutil.rmtree(output_dir, ignore_errors=True)
    shutil.copytree(output_template_dir, output_dir)

    # trained_model = cfg.trained_model
    # trained_model = '/home/cory/yolo2-pytorch/models/training/kitti_new_2/kitti_new_2_100.h5'
    # trained_model = '/home/cory/project/yolo2-pytorch/models/training/kitti_baseline_v3/kitti_baseline_v3_80.h5'
    trained_model = '/home/cory/project/yolo2-pytorch/models/training/kitti_new_2_flow_center_ft/kitti_new_2_flow_center_ft_50.h5'
    # trained_model = '/home/cory/yolo2-pytorch/models/training/kitti_new_2_flow_ft/kitti_new_2_flow_ft_2.h5'
    # trained_model = '/home/cory/yolo2-pytorch/models/training/voc0712_obj_scale/voc0712_obj_scale_1.h5'
    # trained_model = '/home/cory/yolo2-pytorch/models/training/kitti_det_new_2/kitti_det_new_2_40.h5'
    # trained_model = '/home/cory/yolo2-pytorch/models/training/kitti_det_new_2/kitti_det_new_2_10.h5'
    thresh = 0.5

    # car = 1 5
    # pedestrian = 13 17

    net = Darknet19()
    net_utils.load_net(trained_model, net)
    net.eval()
    net.cuda()
    print('load model successfully')
    # print(net)

    img_files = open(
        '/home/cory/project/yolo2-pytorch/train_data/kitti/kitti_val_images.txt'
    )
    # img_files = open('/home/cory/project/yolo2-pytorch/train_data/kitti/0001_images.txt')
    # img_files = open('/home/cory/yolo2-pytorch/train_data/ImageNetVID_test.txt')
    # img_files = open('/home/cory/yolo2-pytorch/train_data/vid04_images.txt')
    image_abs_paths = img_files.readlines()
    image_abs_paths = [f.strip() for f in image_abs_paths]
    image_abs_paths = image_abs_paths[500:]

    key_frame_path = ''
    detection_period = 1
    use_flow = False
    layer_of_flow = 'conv4'

    try:
        os.remove(kitti_filename)
    except OSError:
        pass

    t_det = Timer()
    t_total = Timer()

    for i, image_path in enumerate(image_abs_paths):
        t_total.tic()
        t0 = time.time()
        image, im_data = preprocess(image_path)
        im_data = net_utils.np_to_variable(im_data,
                                           is_cuda=True,
                                           volatile=True).permute(0, 3, 1, 2)
        t1 = time.time()
        print('t1', t1 - t0)

        # key frame
        if use_flow and i % detection_period == 0:
            key_frame_path = image_path
            # conv5 feature map
            feature = net.get_feature_map(im_data=im_data, layer=layer_of_flow)
            feature = feature.data.cpu().numpy()
            feature_map_all = plot_feature_map(feature, resize_ratio=1)
            # cv2.imshow('feature_map', feature_map_all)
            cv2.imwrite(output_dir + '/feature_map/{:04d}.jpg'.format(i),
                        feature_map_all * 255)

        t_det.tic()
        if use_flow:
            conv5_shifted_gpu = detect_by_flow(i, feature, image, image_path,
                                               key_frame_path, output_dir)
            bbox_pred, iou_pred, prob_pred = net.feed_feature(
                Variable(conv5_shifted_gpu), layer=layer_of_flow)

        else:
            bbox_pred, iou_pred, prob_pred = net.forward(im_data)

        det_time = t_det.toc()
        t2 = time.time()
        print('t2', t2 - t1)

        # to numpy
        bbox_pred = bbox_pred.data.cpu().numpy()
        iou_pred = iou_pred.data.cpu().numpy()
        prob_pred = prob_pred.data.cpu().numpy()

        t3 = time.time()
        print('t3', t3 - t2)

        # print bbox_pred.shape, iou_pred.shape, prob_pred.shape

        bboxes, scores, cls_inds = yolo_utils.postprocess(
            bbox_pred, iou_pred, prob_pred, image.shape, cfg, thresh)

        t4 = time.time()
        print('t4', t4 - t3)

        det_obj = detection_objects(bboxes, scores, cls_inds)
        save_as_kitti_format(i, det_obj, kitti_filename, src_label='kitti')
        im2show = yolo_utils.draw_detection(image, bboxes, scores, cls_inds,
                                            cfg)

        cv2.imshow('detection', im2show)
        cv2.imwrite(output_dir + '/detection/{:04d}.jpg'.format(i), im2show)

        total_time = t_total.toc()
        format_str = 'frame: %d, (detection: %.1f fps, %.1f ms) (total: %.1f fps, %.1f ms)'
        print(format_str % (i, 1. / det_time, det_time * 1000, 1. / total_time,
                            total_time * 1000))

        t5 = time.time()
        print('t5', t5 - t4)

        t_det.clear()
        t_total.clear()

        key = cv2.waitKey(1)
        if key == ord('q'):
            break
Exemple #12
0
    def test_ontime(
        self,
        path_in='demo',
        path_out='./interface/tmp/wx_d',
        dec_flag=0,
        cv_im=[],
        da_flag=1,
        retrival_params=['自动', None, None, '全选', '全选', '全选', '全选', '全选',
                         '全选']):
        #Read Infomation

        #print "Test"
        t_det = Timer()
        t_total = Timer()
        # if dec_flag==1:
        #     shutil.rmtree("./result/cut/")
        #     os.mkdir("./result/cut/")
        # im_fnames = ['person.jpg']
        im_fnames = sorted(
            (fname for fname in os.listdir(path_in)
             if os.path.splitext(fname)[-1] == '.jpg'))  # shuffle data
        im_fname = os.path.join(path_in, im_fnames[0])

        if cv_im == []:
            (image, im_data, im_name) = preprocess(im_fname)
            exit()
        else:
            #print "OOOOOOOOOOOOOOOOOOOOOOJBK"
            image = cv_im
            im_name = im_fname
            im_data = get_ImData(cv_im)

        t_total.tic()
        im_data = net_utils.np_to_variable(im_data,
                                           is_cuda=True,
                                           volatile=True).permute(0, 3, 1, 2)
        im_name = os.path.split(im_name)[-1]
        # print im_name
        t_det.tic()

        if dec_flag:
            self.people_sex = None
            self.people_age = 20
            #if retrival_params[0] == '自动' or retrival_params[-1] == '自动':
            if '自动' in retrival_params[0] or '自动' in retrival_params[-1]:
                try:
                    #self.img_uploader.run(im_fname)
                    self.result = self.face.run(im_fname)
                    #print self.result

                    if len(self.result) == 1:
                        if self.result[0][u'faceAttributes'][
                                u'gender'] == u'female':
                            self.people_sex = '2'
                        else:
                            self.people_sex = '1'
                    #print "people_sex:"
                    #print self.people_sex
                except:
                    print "can't contact face identify"
                    pass
            #print 'sex:'
            #print self.people_sex
            #print "ooooooooooooooooooooooooooooooooooooooooooo"
            #print "oooooooooooooooo1"
            #print "oook"
            bbox_pred, iou_pred, prob_pred = self.net(im_data)
            det_time = t_det.toc()
            det_time = t_det.toc()
            # to numpy
            bbox_pred = bbox_pred.data.cpu().numpy()
            iou_pred = iou_pred.data.cpu().numpy()
            prob_pred = prob_pred.data.cpu().numpy()

            # print bbox_pred.shape, iou_pred.shape, prob_pred.shape
            #print "oooooooooooooooo2"
            self.bboxes, self.scores, self.cls_inds = yolo_utils.postprocess(
                bbox_pred, iou_pred, prob_pred, image.shape, cfg, self.thresh)
            #print image.shape
            #print "bboxes"
            #print bboxes
            #print "HAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"
            cls_res = []
            cls_score = []
            cls_res_top5 = []
            cls_score_top5 = []
            flag = 0
            for i, bbox in enumerate(self.bboxes):
                #print "bbox",bbox
                cut_image = image[bbox[1]:bbox[3], bbox[0]:bbox[2]]
                res_num, res_score = cloth_num(cut_image, self.model_res)
                cls_res.append(self.num_classes[res_num[0]])
                cls_re = []
                for n in range(10):
                    cls_re.append(self.num_classes[res_num[n]])
                    #print "++++++++++++++++++++++++++++++"+str(n)
                    #print Cnum[0][n],res_num[0]
                    #print self.num_classes[Cnum[0][n]]
                cls_res_top5.append(cls_re)
                cls_score_top5.append(res_score)
                #print "-------------"
                #print res_score
                #If the adjacent two types of differentiation is too small,it is considered that the category that the category can not be determined
                if res_score[
                        0] < 12 and res_score[1] * 1.0 / res_score[0] > 0.9:
                    #print res_score[1]*1.0/res_score[0]
                    cls_score.append(0)
                else:
                    #If two overlapping frames of the same category exceed 0.4,only the box with the largest weight is saved
                    for j, obox in enumerate(self.bboxes[:i]):
                        # (bbox[0], bbox[1]), (bbox[2], bbox[3])
                        if obox[2] > bbox[0] and obox[3] > bbox[1] and obox[
                                0] < bbox[2] and obox[1] < bbox[3]:
                            print "------------------------xiangjiao------------------------------"
                            box_inter = (max(obox[0],
                                             bbox[0]), max(obox[1], bbox[1]),
                                         min(obox[2],
                                             bbox[2]), min(obox[3], bbox[3]))
                            area1 = (bbox[2] - bbox[0]) * (bbox[3] - bbox[1])
                            area2 = (obox[2] - obox[0]) * (obox[3] - obox[1])
                            area_min = min((area1, area2))
                            area_inter = (box_inter[2] - box_inter[0]) * (
                                box_inter[3] - box_inter[1])
                            #print area_min,area_inter
                            if area_inter * 1.0 / area_min >= 0.5:
                                print "====================YEEEEEES++++++++++++++++"
                                #if cls_res[i]==cls_res[j]:
                                if res_score[0] > cls_score[j]:
                                    if cls_score[j] != 0:
                                        cls_score[j] = 1
                                else:
                                    res_score[0] = 1
                                    break
                    cls_score.append(res_score[0])

                #print res_num
                #cls_score.append(res_score)
                #print "resnet"
                #print cls_res,cls_score

                #cut_for_intel = cv2.resize(cut_image, (800, 500))
                #cut_for_intel = cv2.resize(cut_image,(int(1000. * float(cut_image.shape[1]) / cut_image.shape[0]), 1000))
                #cv2.imwrite("./result/cut/%d_%s"%(i,im_name),cut_for_intel)
            self.cls_res = cls_res
            self.cls_score = cls_score
            self.cls_res_top5 = cls_res_top5
            self.cls_score_top5 = cls_score_top5
            #print "bbboxes"
            #print self.bboxes
            # im2show = yolo_utils.draw_detection_rec(image, self.bboxes, self.scores, self.cls_res,self.cls_score,f_info,f_pic,self.cls_res_top5,self.cls_score_top5,f_pic_like,f_pic_rec,f_pic_rec_like,self.cls_inds)
        else:
            # 用于显示
            #print "bbboxes"
            #print self.bboxes
            #im2show = yolo_utils.draw_detection_rec(image, self.bboxes, self.scores, self.cls_res,self.cls_score,f_info,f_pic,self.cls_res_top5,self.cls_score_top5,f_pic_like,f_pic_rec,f_pic_rec_like,self.cls_inds)
            f_info = open(InfoDir, 'w')
            f_pic = open(InfoPicPath, 'w')
            f_pic_like = open(InfoPicLikePath, 'w')
            f_pic_rec = open(InfoPicPathRec, 'w')
            f_pic_rec_like = open(InfoPicLikePathRec, 'w')
            im2show = self.draw_detection_rec(image,
                                              self.bboxes,
                                              self.cls_inds,
                                              self.scores,
                                              self.cls_res_top5,
                                              self.cls_score_top5,
                                              f_info,
                                              f_pic,
                                              f_pic_like,
                                              f_pic_rec,
                                              f_pic_rec_like,
                                              flag=1,
                                              sex_dec=self.people_sex,
                                              age_dec=self.people_age,
                                              retrival_params=retrival_params)
            if im2show.shape[0] > 1100:
                im2show = cv2.resize(im2show, (int(
                    1000. * float(im2show.shape[1]) / im2show.shape[0]), 1000))
            cv2.imwrite(os.path.join(path_out, im_name), im2show)
            f_info.close()
            f_pic.close()
            f_pic_like.close()
            f_pic_rec.close()
            f_pic_rec_like.close()

        t_total.clear()
        t_det.clear()
Exemple #13
0
    def test(
        self,
        path_in='demo',
        path_out='./interface/tmp/wx_d',
        cut_path='./result/cut/',
        retrival_params=['自动', None, None, '全选', '全选', '全选', '全选', '全选',
                         '全选']):
        #Read Infomation
        #params---->sex,prince1,prince2,dress,top,bottom,version,style,age_value
        #print "Test"
        t_det = Timer()
        t_total = Timer()
        # im_fnames = ['person.jpg']
        im_fnames = sorted(
            (fname for fname in os.listdir(path_in)
             if os.path.splitext(fname)[-1] == '.jpg'))  # shuffle data
        # shutil.rmtree(cut_path)
        # os.mkdir(cut_path)
        for i in im_fnames:
            im_fname = os.path.join(path_in, i)
            #im_fnames = (os.path.join(path_in, fname) for fname in im_fnames)
            #print im_fname
            self.people_sex = None
            self.people_age = 20
            if '自动' in retrival_params[0] or '自动' in retrival_params[-1]:
                try:
                    #self.img_uploader.run(im_fname)
                    self.result = self.face.run(im_fname)
                    #print self.result

                    if len(self.result) == 1:
                        if self.result[0][u'faceAttributes'][
                                u'gender'] == u'female':
                            self.people_sex = '2'
                        else:
                            self.people_sex = '1'
                    self.people_age = self.result[0][u'faceAttributes'][u'age']
                    #print "people_sex:"
                    #print self.people_sex
                except:
                    print "can't found face identify"
                    pass

            print 'sex:'
            print self.people_sex
            #pool = Pool(processes=1)
            #print "HAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"

            #for i, (image, im_data, im_name) in enumerate(pool.imap(preprocess, im_fnames, chunksize=1)):
            (image, im_data, im_name) = preprocess(im_fname)
            t_total.tic()
            im_data = net_utils.np_to_variable(im_data,
                                               is_cuda=True,
                                               volatile=True).permute(
                                                   0, 3, 1, 2)
            im_name = os.path.split(im_name)[-1]
            # print im_name
            t_det.tic()
            #print "oooooooooooooooo1"
            bbox_pred, iou_pred, prob_pred = self.net(im_data)
            det_time = t_det.toc()
            # to numpy
            bbox_pred = bbox_pred.data.cpu().numpy()
            iou_pred = iou_pred.data.cpu().numpy()
            prob_pred = prob_pred.data.cpu().numpy()

            # print bbox_pred.shape, iou_pred.shape, prob_pred.shape
            #print "oooooooooooooooo2"
            self.bboxes, self.scores, self.cls_inds = yolo_utils.postprocess(
                bbox_pred, iou_pred, prob_pred, image.shape, cfg, self.thresh)
            #print image.shape
            #print "bboxes"
            #print bboxes
            #print "HAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"
            cls_res = []
            cls_score = []
            cls_res_top5 = []
            cls_score_top5 = []
            flag = 0
            for i, bbox in enumerate(self.bboxes):
                #print "bbox",bbox
                print "start===================================================%d" % i
                cut_image = image[bbox[1]:bbox[3], bbox[0]:bbox[2]]
                res_num, res_score = cloth_num(cut_image, self.model_res)
                cls_res.append(self.num_classes[res_num[0]])
                cls_re = []
                for n in range(10):
                    cls_re.append(self.num_classes[res_num[n]])
                    #print "++++++++++++++++++++++++++++++"+str(n)
                    #print Cnum[0][n],res_num[0]
                    #print self.num_classes[Cnum[0][n]]
                #print "-------------"
                #print res_score
                #If the adjacent two types of differentiation is too small,it is considered that the category that the category can not be determined
                if res_score[
                        0] < 12 and res_score[1] * 1.0 / res_score[0] > 0.9:
                    #print res_score[1]*1.0/res_score[0]
                    cls_score.append(0)
                else:
                    #If two overlapping frames of the same category exceed 0.4,only the box with the largest weight is saved
                    for j, obox in enumerate(self.bboxes[:i]):
                        # (bbox[0], bbox[1]), (bbox[2], bbox[3])
                        if obox[2] > bbox[0] and obox[3] > bbox[1] and obox[
                                0] < bbox[2] and obox[1] < bbox[3]:
                            print "------------------------xiangjiao------------------------------"
                            box_inter = (max(obox[0],
                                             bbox[0]), max(obox[1], bbox[1]),
                                         min(obox[2],
                                             bbox[2]), min(obox[3], bbox[3]))
                            area1 = (bbox[2] - bbox[0]) * (bbox[3] - bbox[1])
                            area2 = (obox[2] - obox[0]) * (obox[3] - obox[1])
                            area_min = min((area1, area2))
                            area_inter = (box_inter[2] - box_inter[0]) * (
                                box_inter[3] - box_inter[1])
                            #print area_min,area_inter
                            if area_inter * 1.0 / area_min >= 0.5:
                                print "====================YEEEEEES++++++++++++++++"
                                #if cls_res[i]==cls_res[j]:
                                if res_score[0] > cls_score[j]:
                                    if cls_score[j] != 0:
                                        cls_score[j] = 1
                                        cls_score_top5[j][0] = 1
                                else:
                                    res_score[0] = 1
                                    break
                    cls_score.append(res_score[0])
                cls_res_top5.append(cls_re)
                #print cls_score
                cls_score_top5.append(res_score)

                #print res_num
                #cls_score.append(res_score)
                #print "resnet"
                #print cls_res,cls_score

                #cut_for_intel = cv2.resize(cut_image, (800, 500))
                #print "===================================================%d"%i
                #cut_for_intel = cv2.resize(cut_image, (int(1000. * float(cut_image.shape[1]) / cut_image.shape[0]), 1000))
                #cv2.imwrite(os.path.join(cut_path,"%d_%s"%(i,im_name)),cut_for_intel)
            self.cls_res = cls_res
            self.cls_score = cls_score
            self.cls_res_top5 = cls_res_top5
            self.cls_score_top5 = cls_score_top5
            #im2show = yolo_utils.draw_detection(image, bboxes, scores, cls_inds, cfg)
            #print "cls_inds:"
            #print type(self.cls_inds),self.cls_inds
            # print "cls_res:"
            #
            # cls_res=np.array(cls_res)
            #print type(cls_res),cls_res
            # image 原始图像 bboxes 识别框坐标 scores识别置信度 cls_res 第一个分类类别 cls_score 第一个分类置信度 f_info 识别文本信息 f_pic识别的类别信息 cls_res_top5前十个分类类别
            # cls_score_top5前十个分类置信度,f_pic_like识别的相似类别信息,f_pic_rec根据类别推荐的信息,f_pic_rec_like根据相似类别推荐的信息,cls_inds识别的大类别
            f_info = open(InfoDir, 'w')
            f_pic = open(InfoPicPath, 'w')
            f_pic_like = open(InfoPicLikePath, 'w')
            f_pic_rec = open(InfoPicPathRec, 'w')
            f_pic_rec_like = open(InfoPicLikePathRec, 'w')
            im2show = self.draw_detection_rec(image,
                                              self.bboxes,
                                              self.cls_inds,
                                              self.scores,
                                              self.cls_res_top5,
                                              self.cls_score_top5,
                                              f_info,
                                              f_pic,
                                              f_pic_like,
                                              f_pic_rec,
                                              f_pic_rec_like,
                                              sex_dec=self.people_sex,
                                              age_dec=self.people_age,
                                              retrival_params=retrival_params)
            f_info.close()
            f_pic.close()
            f_pic_like.close()
            f_pic_rec.close()
            f_pic_rec_like.close()
            #for i,j in enumerate(cls_res):
            #    info = "识别概率:%0.2f\t准确度:%0.2f\t类别:%s\n" % ((i[0][1]), i[0][0], score_class)

            if im2show.shape[0] > 1100:
                im2show = cv2.resize(im2show, (int(
                    1000. * float(im2show.shape[1]) / im2show.shape[0]), 1000))
            # cv2.imshow('test', im2show)
            #cv2.imwrite("./result/test/{}".format(im_name), im2show)
            cv2.imwrite(os.path.join(path_out, im_name), im2show)
            total_time = t_total.toc()
            # wait_time = max(int(60 - total_time * 1000), 1)
            # cv2.waitKey(0)

            #format_str = 'frame: %d, (detection: %.1f Hz, %.1f ms) (total: %.1f Hz, %.1f ms)'
            #print(format_str % (i, 1. / det_time, det_time * 1000, 1. / total_time, total_time * 1000))

        t_total.clear()
        t_det.clear()
Exemple #14
0
def main():

    shutil.rmtree('output', ignore_errors=True)
    shutil.copytree('output_template', 'output')

    # trained_model = cfg.trained_model
    # trained_model = '/home/cory/yolo2-pytorch/models/training/kitti_new_2/kitti_new_2_60.h5'
    trained_model = '/home/cory/yolo2-pytorch/models/training/voc0712_obj_scale/voc0712_obj_scale_1.h5'
    # trained_model = '/home/cory/yolo2-pytorch/models/training/kitti_det_new_2/kitti_det_new_2_40.h5'
    # trained_model = '/home/cory/yolo2-pytorch/models/training/kitti_det_new_2/kitti_det_new_2_10.h5'
    thresh = 0.5
    use_kitti = True
    image_dir = '/home/cory/KITTI_Dataset/data_tracking_image_2/training/image_02/0013'
    # car = 1 5
    # pedestrian = 13 17

    net = Darknet19()
    net_utils.load_net(trained_model, net)
    net.eval()
    net.cuda()
    print('load model successfully')
    # print(net)

    def str_index(filename):
        if use_kitti:
            return filename
        begin_pos = filename.rfind('_') + 1
        end_pos = filename.rfind('.')
        str_v = filename[begin_pos: end_pos]
        return int(str_v)

    image_extensions = ['.jpg', '.JPG', '.png', '.PNG']
    image_abs_paths = sorted([os.path.join(image_dir, name)
                              for name in os.listdir(image_dir)
                              if name[-4:] in image_extensions],
                             key=str_index)

    key_frame_path = ''
    detection_period = 5
    use_flow = False

    kitti_filename = 'yolo_flow_kitti_det.txt'
    try:
        os.remove(kitti_filename)
    except OSError:
        pass

    t_det = Timer()
    t_total = Timer()

    for i, image_path in enumerate(image_abs_paths):
        t_total.tic()
        image, im_data = preprocess(image_path)
        im_data = net_utils.np_to_variable(im_data, is_cuda=True, volatile=True).permute(0, 3, 1, 2)

        layer_of_flow = 'conv4'
        # key frame
        if i % detection_period == 0 and use_flow:
            key_frame_path = image_path
            # conv5 feature map
            feature = net.get_feature_map(im_data=im_data, layer=layer_of_flow)
            feature = feature.data.cpu().numpy()
            feature_map_all = plot_feature_map(feature, resize_ratio=1)
            # cv2.imshow('feature_map', feature_map_all)
            cv2.imwrite('output/feature_map/{:04d}.jpg'.format(i), feature_map_all * 255)

        t_det.tic()
        if use_flow:
            t1 = time.time()
            conv5_shifted_gpu = detect_by_flow(i, feature, image, image_path, key_frame_path)
            t2 = time.time()
            print('detect_by_flow', t2 - t1)
            bbox_pred, iou_pred, prob_pred = net.feed_feature(Variable(conv5_shifted_gpu), layer=layer_of_flow)

        else:
            bbox_pred, iou_pred, prob_pred = net.forward(im_data)

        det_time = t_det.toc()

        # to numpy
        bbox_pred = bbox_pred.data.cpu().numpy()
        iou_pred = iou_pred.data.cpu().numpy()
        prob_pred = prob_pred.data.cpu().numpy()

        # print bbox_pred.shape, iou_pred.shape, prob_pred.shape

        bboxes, scores, cls_inds = yolo_utils.postprocess(bbox_pred, iou_pred, prob_pred, image.shape, cfg, thresh)
        det_obj = detection_objects(bboxes, scores, cls_inds)
        save_as_kitti_format(i, det_obj, kitti_filename, src_label='kitti')

        im2show = yolo_utils.draw_detection(image, bboxes, scores, cls_inds, cfg)

        cv2.imshow('detection', im2show)
        cv2.imwrite('output/detection/{:04d}.jpg'.format(i), im2show)

        total_time = t_total.toc()
        format_str = 'frame: %d, (detection: %.1f fps, %.1f ms) (total: %.1f fps, %.1f ms)'
        print(format_str % (
            i, 1. / det_time, det_time * 1000, 1. / total_time, total_time * 1000))

        t_det.clear()
        t_total.clear()

        key = cv2.waitKey(1)
        if key == ord('q'):
            break
Exemple #15
0
    # print bbox_pred.shape, iou_pred.shape, prob_pred.shape

    bboxes, scores, cls_inds = yolo_utils.postprocess(
        bbox_pred, iou_pred, prob_pred, image.shape, cfg, thresh)

    im2show = yolo_utils.draw_detection(image, bboxes, scores, cls_inds, cfg)

    if im2show.shape[0] > 1100:
        im2show = cv2.resize(im2show,
                             (int(1000. *
                                  float(im2show.shape[1]) / im2show.shape[0]),
                              1000))
    cv2.imshow('test', im2show)

    total_time = t_total.toc()
    # wait_time = max(int(60 - total_time * 1000), 1)
    cv2.waitKey(0)

    if i % 1 == 0:
        format_str = 'frame: %d, ' \
                     '(detection: %.1f Hz, %.1f ms) ' \
                     '(total: %.1f Hz, %.1f ms)'
        print((format_str % (
            i,
            1. / det_time, det_time * 1000,
            1. / total_time, total_time * 1000)))

        t_total.clear()
        t_det.clear()