Exemple #1
0
    def e_step(self, y, qs, *params):
        prior = concatenate(params[:1], axis=0)
        consider_constant = [y, prior]
        cost = T.constant(0.).astype(floatX)

        for l in xrange(self.n_layers):
            q = qs[l]
            mu_q = _slice(q, 0, self.dim_h)
            log_sigma_q = _slice(q, 1, self.dim_h)

            kl_term = self.kl_divergence(q, prior).mean(axis=0)

            epsilon = self.trng.normal(avg=0,
                                       std=1.0,
                                       size=(self.n_inference_samples,
                                             mu_q.shape[0], mu_q.shape[1]))

            h = mu_q + epsilon * T.exp(log_sigma_q)
            p = self.p_y_given_h(h, *params)

            if l == 0:
                cond_term = self.conditional.neg_log_prob(y[None, :, :],
                                                          p).mean(axis=0)
            else:
                cond_term = self.kl_divergence(q[l - 1][None, :, :], p)

            cost += (kl_term + cond_term).sum(axis=0)

        grads = theano.grad(cost, wrt=qs, consider_constant=consider_constant)

        cost = kl_term.mean()
        return cost, grads
Exemple #2
0
def _normal(trng, p, size=None):
    dim = p.shape[p.ndim - 1] // 2
    mu = _slice(p, 0, dim)
    log_sigma = _slice(p, 1, dim)

    if size is None:
        size = mu.shape
    return trng.normal(avg=mu, std=T.exp(log_sigma), size=size, dtype=floatX)
Exemple #3
0
 def neg_log_prob(self, x, p=None):
     if p is None:
         p = self.get_prob(*self.get_params())
     mu = _slice(p, 0, p.shape[p.ndim - 1] // 2)
     log_sigma = _slice(p, 1, p.shape[p.ndim - 1] // 2)
     mu = T.clip(mu, self.min, self.max)
     p = concatenate([mu, log_sigma], axis=mu.ndim - 1)
     return self.f_neg_log_prob(x, p)
Exemple #4
0
def _neg_normal_log_prob(x, p, clip=None):
    dim = p.shape[p.ndim - 1] // 2
    mu = _slice(p, 0, dim)
    log_sigma = _slice(p, 1, dim)
    if clip is not None:
        log_sigma = T.maximum(log_sigma, clip)
    energy = 0.5 * ((x - mu)**2 /
                    (T.exp(2 * log_sigma)) + 2 * log_sigma + T.log(2 * pi))
    return energy.sum(axis=energy.ndim - 1)
Exemple #5
0
    def step_kl_divergence(self, q, mu, log_sigma):
        mu_q = _slice(q, 0, self.dim)
        mu = T.clip(mu, self.min, self.max)
        mu_q = T.clip(mu_q, self.min, self.max)
        log_sigma_q = _slice(q, 1, self.dim)

        kl = log_sigma - log_sigma_q + 0.5 * (
            (T.exp(2 * log_sigma_q) +
             (mu - mu_q)**2) / T.exp(2 * log_sigma) - 1)
        return kl.sum(axis=kl.ndim - 1)
Exemple #6
0
    def kl_divergence(self, p, q, entropy_scale=1.0):
        dim = self.dim_h
        mu_p = _slice(p, 0, dim)
        log_sigma_p = _slice(p, 1, dim)
        mu_q = _slice(q, 0, dim)
        log_sigma_q = _slice(q, 1, dim)

        kl = log_sigma_q - log_sigma_p + 0.5 * (
            (T.exp(2 * log_sigma_p) +
             (mu_p - mu_q)**2) / T.exp(2 * log_sigma_q) - 1)
        return kl.sum(axis=kl.ndim - 1)
Exemple #7
0
def _normal_entropy(p, clip=None):
    dim = p.shape[p.ndim - 1] // 2
    log_sigma = _slice(p, 1, dim)
    if clip is not None:
        log_sigma = T.maximum(log_sigma, clip)
    entropy = 0.5 * T.log(2 * pi * e) + log_sigma
    return entropy.sum(axis=entropy.ndim - 1)
Exemple #8
0
def _normal_prob(p):
    dim = p.shape[p.ndim - 1] // 2
    mu = _slice(p, 0, dim)
    return mu
Exemple #9
0
 def step_neg_log_prob(self, x, p):
     mu = _slice(p, 0, p.shape[p.ndim - 1] // 2)
     log_sigma = _slice(p, 1, p.shape[p.ndim - 1] // 2)
     mu = T.clip(mu, self.min, self.max)
     p = concatenate([mu, log_sigma], axis=mu.ndim - 1)
     return self.f_neg_log_prob(x, p)
Exemple #10
0
 def __call__(self, p):
     mu = _slice(p, 0, p.shape[p.ndim - 1] // 2)
     log_sigma = _slice(p, 1, p.shape[p.ndim - 1] // 2)
     mu = T.clip(mu, self.min, self.max)
     return concatenate([mu, log_sigma], axis=mu.ndim - 1)
Exemple #11
0
 def step_sample(self, epsilon, p):
     dim = p.shape[p.ndim - 1] // self.scale
     mu = _slice(p, 0, dim)
     log_sigma = _slice(p, 1, dim)
     return mu + epsilon * T.exp(log_sigma)
Exemple #12
0
 def split_prob(self, p):
     mu = _slice(p, 0, p.shape[p.ndim - 1] // self.scale)
     log_sigma = _slice(p, 1, p.shape[p.ndim - 1] // self.scale)
     return mu, log_sigma
Exemple #13
0
 def get_center(self, p):
     mu = _slice(p, 0, p.shape[p.ndim - 1] // self.scale)
     return mu