def configure_lr_scheduler(args, optimizer): lr_scheduler = None with logger.LoggingBlock("Learning Rate Scheduler", emph=True): logging.info("class: %s" % args.lr_scheduler) if args.lr_scheduler is not None: # ---------------------------------------------- # Figure out lr_scheduler arguments # ---------------------------------------------- kwargs = tools.kwargs_from_args(args, "lr_scheduler") # ------------------------------------------- # Print arguments # ------------------------------------------- for param, default in sorted(kwargs.items()): logging.info("%s: %s" % (param, default)) # ------------------------------------------- # Add optimizer # ------------------------------------------- kwargs["optimizer"] = optimizer # ------------------------------------------- # Create lr_scheduler instance # ------------------------------------------- lr_scheduler = tools.instance_from_kwargs(args.lr_scheduler_class, kwargs) return lr_scheduler
def configure_runtime_augmentations(args): with logger.LoggingBlock("Runtime Augmentations", emph=True): training_augmentation = None validation_augmentation = None # ---------------------------------------------------- # Training Augmentation # ---------------------------------------------------- if args.training_augmentation is not None: kwargs = tools.kwargs_from_args(args, "training_augmentation") logging.info("training_augmentation: %s" % args.training_augmentation) for param, default in sorted(kwargs.items()): logging.info(" %s: %s" % (param, default)) kwargs["args"] = args training_augmentation = tools.instance_from_kwargs( args.training_augmentation_class, kwargs) if args.cuda: training_augmentation = training_augmentation.cuda() else: logging.info("training_augmentation: None") # ---------------------------------------------------- # Training Augmentation # ---------------------------------------------------- if args.validation_augmentation is not None: kwargs = tools.kwargs_from_args(args, "validation_augmentation") logging.info("validation_augmentation: %s" % args.training_augmentation) for param, default in sorted(kwargs.items()): logging.info(" %s: %s" % (param, default)) kwargs["args"] = args validation_augmentation = tools.instance_from_kwargs( args.validation_augmentation_class, kwargs) if args.cuda: validation_augmentation = validation_augmentation.cuda() else: logging.info("validation_augmentation: None") return training_augmentation, validation_augmentation
def configure_optimizer(args, model_and_loss): optimizer = None with logger.LoggingBlock("Optimizer", emph=True): if args.optimizer is not None: if model_and_loss.num_parameters() == 0: logging.info("No trainable parameters detected.") logging.info("Setting optimizer to None.") else: logging.info(args.optimizer) # ------------------------------------------- # Figure out all optimizer arguments # ------------------------------------------- all_kwargs = tools.kwargs_from_args(args, "optimizer") # ------------------------------------------- # Get the split of param groups # ------------------------------------------- kwargs_without_groups = { key: value for key, value in all_kwargs.items() if key != "group" } param_groups = all_kwargs["group"] # ---------------------------------------------------------------------- # Print arguments (without groups) # ---------------------------------------------------------------------- for param, default in sorted(kwargs_without_groups.items()): logging.info("%s: %s" % (param, default)) # ---------------------------------------------------------------------- # Construct actual optimizer params # ---------------------------------------------------------------------- kwargs = dict(kwargs_without_groups) if param_groups is None: # --------------------------------------------------------- # Add all trainable parameters if there is no param groups # --------------------------------------------------------- all_trainable_parameters = _generate_trainable_params( model_and_loss) kwargs["params"] = all_trainable_parameters else: # ------------------------------------------- # Add list of parameter groups instead # ------------------------------------------- trainable_parameter_groups = [] dnames, dparams = _param_names_and_trainable_generator( model_and_loss) dnames = set(dnames) dparams = set(list(dparams)) with logger.LoggingBlock("parameter_groups:"): for group in param_groups: # log group settings group_match = group["params"] group_args = { key: value for key, value in group.items() if key != "params" } with logger.LoggingBlock( "%s: %s" % (group_match, group_args)): # retrieve parameters by matching name gnames, gparams = _param_names_and_trainable_generator( model_and_loss, match=group_match) # log all names affected for n in sorted(gnames): logging.info(n) # set generator for group group_args["params"] = gparams # append parameter group trainable_parameter_groups.append(group_args) # update remaining trainable parameters dnames -= set(gnames) dparams -= set(list(gparams)) # append default parameter group trainable_parameter_groups.append( {"params": list(dparams)}) # and log its parameter names with logger.LoggingBlock("default:"): for dname in sorted(dnames): logging.info(dname) # set params in optimizer kwargs kwargs["params"] = trainable_parameter_groups # ------------------------------------------- # Create optimizer instance # ------------------------------------------- optimizer = tools.instance_from_kwargs(args.optimizer_class, kwargs) return optimizer
def configure_data_loaders(args): with logger.LoggingBlock("Datasets", emph=True): def _sizes_to_str(value): if np.isscalar(value): return '[1L]' else: return ' '.join([str([d for d in value.size()])]) def _log_statistics(dataset, prefix, name): with logger.LoggingBlock("%s Dataset: %s" % (prefix, name)): example_dict = dataset[ 0] # get sizes from first dataset example for key, value in sorted(example_dict.items()): if key in ["index", "basename"]: # no need to display these continue if isinstance(value, str): logging.info("{}: {}".format(key, value)) else: logging.info("%s: %s" % (key, _sizes_to_str(value))) logging.info("num_examples: %i" % len(dataset)) # ----------------------------------------------------------------------------------------- # GPU parameters -- turning off pin_memory? for resolving the deadlock? # ----------------------------------------------------------------------------------------- gpuargs = { "num_workers": args.num_workers, "pin_memory": False } if args.cuda else {} train_loader = None validation_loader = None inference_loader = None # ----------------------------------------------------------------------------------------- # Training dataset # ----------------------------------------------------------------------------------------- if args.training_dataset is not None: # ---------------------------------------------- # Figure out training_dataset arguments # ---------------------------------------------- kwargs = tools.kwargs_from_args(args, "training_dataset") kwargs["is_cropped"] = True kwargs["args"] = args # ---------------------------------------------- # Create training dataset # ---------------------------------------------- train_dataset = tools.instance_from_kwargs( args.training_dataset_class, kwargs) # ---------------------------------------------- # Create training loader # ---------------------------------------------- train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, drop_last=False, **gpuargs) _log_statistics(train_dataset, prefix="Training", name=args.training_dataset) # ----------------------------------------------------------------------------------------- # Validation dataset # ----------------------------------------------------------------------------------------- if args.validation_dataset is not None: # ---------------------------------------------- # Figure out validation_dataset arguments # ---------------------------------------------- kwargs = tools.kwargs_from_args(args, "validation_dataset") kwargs["is_cropped"] = True kwargs["args"] = args # ---------------------------------------------- # Create validation dataset # ---------------------------------------------- validation_dataset = tools.instance_from_kwargs( args.validation_dataset_class, kwargs) # ---------------------------------------------- # Create validation loader # ---------------------------------------------- validation_loader = DataLoader(validation_dataset, batch_size=args.batch_size_val, shuffle=False, drop_last=False, **gpuargs) _log_statistics(validation_dataset, prefix="Validation", name=args.validation_dataset) return train_loader, validation_loader, inference_loader
def configure_model_and_loss(args): # ---------------------------------------------------- # Dynamically load model and loss class with parameters # passed in via "--model_[param]=[value]" or "--loss_[param]=[value]" arguments # ---------------------------------------------------- with logger.LoggingBlock("Model and Loss", emph=True): # ---------------------------------------------------- # Model # ---------------------------------------------------- kwargs = tools.kwargs_from_args(args, "model") kwargs["args"] = args if type(args.checkpoint) == list and len(args.checkpoint) > 1: models = nn.ModuleList([ tools.instance_from_kwargs(args.model_class, kwargs) for _ in args.checkpoint ]) else: models = tools.instance_from_kwargs(args.model_class, kwargs) if hasattr(args, 'avoid_list') and args.avoid_list: for model in models: model.avoid_list = args.avoid_list.split(',') # ---------------------------------------------------- # Training loss # ---------------------------------------------------- training_loss = None if args.training_loss is not None: kwargs = tools.kwargs_from_args(args, "training_loss") kwargs["args"] = args training_loss = tools.instance_from_kwargs( args.training_loss_class, kwargs) # ---------------------------------------------------- # Validation loss # ---------------------------------------------------- validation_loss = None if args.validation_loss is not None: kwargs = tools.kwargs_from_args(args, "validation_loss") kwargs["args"] = args validation_loss = tools.instance_from_kwargs( args.validation_loss_class, kwargs) # ---------------------------------------------------- # Model and loss # ---------------------------------------------------- model_and_loss = ModelAndLoss(args, models, training_loss, validation_loss) # ----------------------------------------------------------- # If Cuda, transfer model to Cuda and wrap with DataParallel. # ----------------------------------------------------------- if args.cuda: model_and_loss = model_and_loss.cuda() # --------------------------------------------------------------- # Report some network statistics # --------------------------------------------------------------- logging.info("Batch Size: %i" % args.batch_size) logging.info("GPGPU: Cuda") if args.cuda else logging.info( "GPGPU: off") logging.info("Network: %s" % args.model) logging.info("Number of parameters: %i" % tools.x2module(model_and_loss).num_parameters()) if training_loss is not None: logging.info("Training Key: %s" % args.training_key) logging.info("Training Loss: %s" % args.training_loss) if validation_loss is not None: logging.info("Validation Key: %s" % args.validation_key) logging.info("Validation Loss: %s" % args.validation_loss) return model_and_loss