Exemple #1
0
    def __init__(self, source=None, **kwargs):
        kwargs = super(SimTB, self).__init__(**kwargs)

        if source is None:
            raise ValueError('No source provided')

        # Fetch simTB data from "source" source can be file, directory, etc.
        self.X = self.get_data(source)
        self.n = self.X.shape[0]

        # Reference for the dimension of the dataset. A dict is used for
        # multimodal data (e.g., mri and labels)
        self.dims = dict()
        self.dims[self.name] = self.X.shape[1]

        # This is reference for models to decide how the data should be modelled
        # E.g. with a binomial or gaussian variable
        self.distributions = dict()
        self.distributions[self.name] = 'gaussian'

        # We will probably center the data in the main script using this
        # global mean image.
        self.mean_image = self.X.mean(axis=0)

        warn_kwargs(self, kwargs)
Exemple #2
0
    def __init__(self, source=None, **kwargs):
        kwargs = super(SimTB, self).__init__(**kwargs)

        if source is None:
            raise ValueError('No source provided')

        # Fetch simTB data from "source" source can be file, directory, etc.
        self.X = self.get_data(source)
        self.n = self.X.shape[0]

        # Reference for the dimension of the dataset. A dict is used for
        # multimodal data (e.g., mri and labels)
        self.dims = dict()
        self.dims[self.name] = self.X.shape[1]

        # This is reference for models to decide how the data should be modelled
        # E.g. with a binomial or gaussian variable
        self.distributions = dict()
        self.distributions[self.name] = 'gaussian'

        # We will probably center the data in the main script using this
        # global mean image.
        self.mean_image = self.X.mean(axis=0)

        warn_kwargs(self, kwargs)
Exemple #3
0
 def __init__(self, name='', excludes=[], learn=True, **kwargs):
     self.name = name
     self.params = None
     self.excludes = excludes
     self.learn = learn
     self.set_params()
     self.n_params = len(self.params)
     warn_kwargs(kwargs)
Exemple #4
0
    def __init__(self,
                 model,
                 name='IRVI',
                 inference_rate=0.1,
                 n_inference_samples=20,
                 n_inference_steps=20,
                 pass_gradients=True,
                 init_inference='recognition_network',
                 **kwargs):

        self.name = name
        self.model = model
        self.init_inference = init_inference
        self.inference_rate = inference_rate
        self.n_inference_steps = n_inference_steps
        self.n_inference_samples = n_inference_samples
        self.pass_gradients = pass_gradients
        warn_kwargs(self, **kwargs)
Exemple #5
0
 def __init__(self, model, name='RWS', **kwargs):
     self.name = name
     self.model = model
     warn_kwargs(self, **kwargs)